Единицы измерения радиации. единицы измерения проникающей радиации
Содержание:
- Симптоматика лучевой болезни
- Уровни безопасности радиационного излучения
- Естественная радиация
- В чем измеряется радиация
- Допустимые и смертельные дозы для человека
- Сводная таблица единиц измерения
- Способы индивидуальной защиты в случае радиационного загрязнения местности
- Эквивалентная доза (биологическая доза)
- Допустимые дозы радиации
- Беккерель
- Экспозиционная и эквивалентная дозы.
- Эффективная доза
- Единица измерения дозы облучения / дозы радиации Зиверт. Единица измерения радиации Зиверт. Опасные и повседневные уровни радиации.
- Вынужденные диагностические дозы рентген облучения
- Эквивалентная доза
Симптоматика лучевой болезни
Если нормальная доза радиации была превышена не критически, то появляются симптомы лучевой травмы. Среди них выделяют:
- Приступы тошноты и рвоты.
- Сухость слизистых поверхностей носоглотки.
- Во рту ощущается вкус горечи.
- Появляются сильные головные боли.
- Пострадавший быстро устает, его покидают жизненные силы.
- Снижается артериальное давление.
В случае превышения дозы облучения в 10 Зв наблюдаются следующие признаки:
- Покраснение отдельных участков кожи. Со временем они приобретают синий оттенок.
- Изменяется частота сокращения сердечной мышцы.
- Снижается мышечный тонус.
- Появляется тремор в пальцах.
- Пропадает сухожильный рефлекс.
Спустя четыре дня выраженные симптомы пропадают. Заболевание переходит в скрытую форму. Ее продолжительность будет зависеть от степени поражения организма. При этом в значительной степени снижаются все рефлексы организма, проявляются симптомы невралгического характера.
Если доза облучения превышала 3 ЗВ, то спустя две недели начинается интенсивное облысение. При дозе выше 10 Зв заболевание сразу же переходит в третью фазу. Наблюдается серьезное изменение состава крови, развиваются инфекционные заболевания. В кратчайшие сроки наступает отек мозга, полностью пропадает мышечный тонус. В подавляющем большинстве случаев человек погибает.
Уровни безопасности радиационного излучения
Для населения установлены определенные уровни безопасных величин поглощаемых доз излучения, которые измеряются дозиметром.
На каждой территории есть свой естественный радиационный фон, но безопасным для населения считается величина, равная приблизительно 0,5 микрозиверт (µЗв) в час (до 50 микрорентген в час). При нормальном радиационном фоне наиболее безопасным уровнем внешнего облучения человеческого тела считается величина до 0,2 (µЗв) микрозиверт в час (значение, равное 20 микрорентгенам в час).
Самый верхний предел допустимого радиационного уровня – 0.5 µЗв — или 50 мкР/ч.
Соответственно, без вреда для здоровья человек может перенести излучение, мощность которого составляет 10 мкЗ/ч (микрозиверт), а при сокращении времени воздействия до минимума, безвредно излучение в несколько миллизивертов в час. Так воздействует флюорография, рентген – до 3 мЗв. Снимок больного зуба у стоматолога – 0,2 мЗв. Поглощаемая доза облучения имеет способность накапливаться в течение жизни, но сумма не должна пересекать порог в 100-700 мЗв.
Естественная радиация
Уровень природной радиации зависит от нескольких факторов:
- показателя высоты над уровнем моря (чем ниже, тем меньше фон, и наоборот);
- структуры почвы, воды, горных пород;
- искусственных причин (производство, АЭС).
Человек получает радиацию через продукты питания, излучение почв, солнца, при медицинском обследовании. Дополнительными источниками облучения становятся производственные предприятия, атомные станции, испытательные полигоны и пусковые аэродромы.
Специалисты считают наиболее приемлемым облучение, которое не превышает 0.2 мкЗв за один час. А верхняя граница нормы радиации определяется в 0.5 мкЗв в час. По прошествии некоторого времени непрерывного воздействия ионизированных веществ допустимые дозы облучения для человека увеличиваются до 10 мкЗв/ч.
По мнению врачей, за всю жизнь человек может получить радиацию в размере не более 100–700 миллизиверт. По факту люди, проживающие в горной местности, подвергаются излучению в несколько больших размерах. Средние показатели поглощения ионизированной энергии в год составляют около 2–3 миллизиверт.
В чем измеряется радиация
Ионизация органических тканей приводит к нарушению механизмов регенерации клеточных структур и возникновению раковых опухолей.
Рисунок 4. Влияние превышения допустимых доз радиации на организм человека
Поэтому очень важно проводить измерение уровня радиации окружающей среды при подозрении на повышенный уровень загрязнения. Для удобства измерения была придумана единица измерения радиации, выражающая количество поглощенной биологическими тканями энергии – Зиверт
Количество накопительного облучения, которое будет безопасным для человека – это 3.5-4 мЗв в течение одного года (Рисунок 4). Помимо Зиверта, существуют и другие единицы измерения.
Каждая из них обладает своими особенностями, необходимыми для как можно более точного установления дозы облучения:
- Экспозиционная доза. Используется для измерения концентрации в объемах воздуха позитивных ионов, гамма-лучей и потока рентгеновского излучения. Единица измерения радиации, применяемая для такого типа дозы – это 1 Кулон на 1000 грамм массы. Для сравнения с другой единицей измерения 1 Кл/Г равноценен 3876 Рентгенам.
- Поглощенная доза. Этим термином обозначают количество радиационного облучения, поглощенного определенным типом вещества. Бетон, сталь, человеческая плоть – для каждого из этих видов материи применятся свой алгоритм подсчета поглощенной дозы. Применяемой для измерения системной единицей является Грей, не системной – Рад. 1Гр = 100 Рад.
- Эквивалентная доза. Данный термин выступает показателем уровня деградации органики под воздействием различных видов энергии радиоактивного воздействия, которая была поглощена. Измерение дозы радиации такого типа в системе СИ осуществляется с помощью Зиверта (Зв). Внесистемным значением выступает Бэр (бэр), и его соотношение к Зиверту = 1:100.
- Эффективная доза. По причине различия клеточного состава человеческие органы обладают индивидуальным уровнем чувствительности к радиации. Для удобства определения дозы, способной вывести тот или иной орган из строя добавили этот определитель. Роль единицы измерения вновь играет Зиверт (Зв).
- Мощность эквивалентной дозы. Поскольку распределение лучей во времени неравномерно, а сам источник не излучает волны со стабильным промежутком, был введен показатель поглощенной дозы за единицу времени. Он называется мощностью дозы и выражается в любой удобной единице измерения радиоактивного воздействия на один час времени. Мера измерения радиации – Рентген (Р), Зиверт (Зв) или же Грей (Г).
Допустимые и смертельные дозы для человека
См. также: НРБ-99
Миллизиверт (мЗв) часто используется как мера дозы при медицинских диагностических процедурах (рентгеноскопия, рентгеновская компьютерная томография и т. п.).
Согласно постановлению главного государственного санитарного врача России за № 11 от 21 апреля 2006 г. «Об ограничении облучения населения при проведении рентгенорадиологических медицинских исследований», п. 3.2, необходимо «обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации». Среднемировая доза облучения от рентгенологических исследований, накопленная на душу населения за год, равна 0,4 мЗв, однако в странах с высоким уровнем доступа к медобслуживанию (более одного врача на 1000 человек населения) этот показатель растёт до 1,2 мЗв. Облучение от других техногенных источников значительно меньше: 0,005 мЗв от радионуклидов, оставшихся от атмосферных ядерных испытаний, 0,002 мЗв от Чернобыльской катастрофы, 0,0002 мЗв от ядерной энергетики.
Среднемировая доза облучения от естественных источников, накопленная на душу населения за год, равна 2,4 мЗв, с разбросом от 1 до 10 мЗв. Основные компоненты:
- 0,4 мЗв от космических лучей (от 0,3 до 1,0 мЗв, в зависимости от высоты над уровнем моря);
- 0,5 мЗв от внешнего гамма-излучения (от 0,3 до 0,6 мЗв, в зависимости от радионуклидного состава окружения — почвы, стройматериалов и т. п.);
- 1,2 мЗв внутреннего облучения от ингалируемых атмосферных радионуклидов, главным образом радона (от 0,2 до 10 мЗв, в зависимости от местной концентрации радона в воздухе);
- 0,3 мЗв внутреннего облучения от инкорпорированных радионуклидов (от 0,2 до 0,8 мЗв, в зависимости от радионуклидного состава пищевых продуктов и воды).
При однократном равномерном облучении всего тела и неоказании специализированной медицинской помощи смерть в результате острой лучевой болезни наступает в 50 % случаев:
- при дозе порядка 3—5 Гр из-за повреждения костного мозга в течение 30—60 суток;
- 10 ± 5 Гр из-за повреждения желудочно-кишечного тракта и лёгких в течение 10—20 суток;
- > 15 Гр из-за повреждения нервной системы в течение 1—5 суток.
Сводная таблица единиц измерения
Физическая величина | Внесистемная единица | Единица СИ | Переход от внесистемной единицы к единице СИ |
---|---|---|---|
Активность нуклида в радиоактивном источнике | Кюри (Ки) | Беккерель (Бк) | 1 Ки = 3.7⋅1010 Бк |
Экспозиционная доза | Рентген (Р) | Кулон/килограмм (Кл/кг) | 1 Р = 2,58⋅10−4 Кл/кг |
Поглощенная доза | Рад (рад) | Грей (Дж/кг) | 1 рад = 0,01 Гр |
Эквивалентная доза | Бэр (бэр) | Зиверт (Зв) | 1 бэр = 0,01 Зв |
Мощность экспозиционной дозы | Рентген/секунда (Р/c) | Кулон/килограмм (в) секунду (Кл/кг·с) | 1 Р/c = 2.58⋅10−4 Кл/кг·с |
Мощность поглощенной дозы | Рад/секунда (Рад/с) | Грей/секунда (Гр/с) | 1 рад/с = 0.01 Гр/c |
Мощность эквивалентной дозы | Бэр/секунда (бэр/с) | Зиверт/секунда (Зв/с) | 1 бэр/c = 0.01 Зв/с |
Интегральная доза | Рад-грамм (Рад·г) | Грей-килограмм (Гр·кг) | 1 рад·г = 10−5 Гр·кг |
Способы индивидуальной защиты в случае радиационного загрязнения местности
Определены стандартные действия для населения, если на территории радиация. Смертельная доза облучения опасна для жизни, поэтому для уменьшения летальных исходов организовывается эвакуация людей в сооружения, которые по степени защиты делят на капитальные бомбоубежища, подвалы, деревянные строения и автомобили. Лучше всего защищает первый тип строения, остальные рассматриваются как экстренные временные пристанища.
К эффективным мерам относят защиту органов дыхания, воды и продовольственных припасов. Укрытие предметов первой необходимости делают заранее, если существует опасность выброса или взрыва. Употребляют противорадиационные медикаменты, не применяют для питания молоко в свежем виде.
Производится регулярная санитарная обработка и обеззараживание местности, при любом удобном случае люди эвакуируются за пределы зараженного района. Уменьшение внутреннего облучения за счет исключения захвата пыли обеспечивается респираторами, эффективными в 80% случаев. Меньший показатель дает марлевая повязка из четырех слоев, но используют все имеющиеся под рукой средства защиты. В качестве накидки применяют водоотталкивающие дождевики, в крайнем случае, полиэтиленовую пленку.
В заключение следует упомянуть, что радиационная загрязненность местности не уменьшается, опасность заражения человека сводится к минимуму применением индивидуальных средств защиты и контролем полученной дозы облучения с помощью дозиметров.
Эквивалентная доза (биологическая доза)
Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощённых дозах различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжёлая частица (например, протон) производит на единице длины пути в ткани больше ионов, чем лёгкая (например, электрон). При одной и той же поглощённой дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, введено понятие эквивалентной дозы. Эквивалентная доза рассчитывается путём умножения значения поглощённой дозы на специальный коэффициент — взвешивающий коэффициент излучения, учитывающий относительную биологическую эффективность различных видов радиации.
Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощённой в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощённая доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является бэр (до 1954 года — биологический эквивалент рентгена, после 1954 года — биологический эквивалент рада). 1 Зв = 100 бэр.
Допустимые дозы радиации
- допустимый уровень радиоактивного излучения от естественных источников излучения, иначе говоря естественный радиоактивный фон, в соответствии с нормативными документами, может быть в течении пяти лет подряд не выше чем
0,57 мкЗв/час
В последующие года, радиационный фон должен быть не выше 0,12 мкЗв/час
предельно допустимой суммарной годовой дозой, полученной от всех техногенных источников, является
1 мЗв/год
Величина 1 мЗв/год, суммарно должна включать в себя все эпизоды техногенного воздействия радиации на человека. Сюда входят все типы медицинских обследований и процедур, включает флюорографию, рентген зуба и так далее. Так же сюда относятся полеты на самолетах, прохождение через досмотр в аэропорту, получение радиоактивных изотопов с пищей и так далее.
Беккерель
Единица измерения дозы радиации беккерель является системной и входит в Международную систему единиц (СИ). Она является самой простой, потому что активность радиации в один беккерель означает, что в веществе происходит всего один радиоактивный распад за секунду.
Она получила свое название в честь Антуана Анри Беккереля, французского физика. Название было одобрено в конце прошлого века и используется до сих пор. Так как это достаточно маленькая единица, то для обозначения активности используют десятичные приставки: кило-, милли-, микро- и другие.
В последнее время вместе с беккерелями стали использоваться такие внесистемные единицы, как кюри и резерфорд. Один резерфорд равняется миллиону беккерелей. В описании объемной или поверхностной активности можно встретить обозначения беккерель на килограмм, беккерель на метр (квадратный или кубический) и различные их производные.
Экспозиционная и эквивалентная дозы.
ДО
–
Экспозиционная
доза излучения
– характеристика ионизационной
способности рентгеновского и -излучения,
измеряемая по ионизации воздуха.
«СИ» — Кулон/кг
(Кл/кг)
Внесистемная —
рентген (Р)
Рентген
– внесистемная единица экспозиционной
дозы рентгеновского и гамма-излучения,
равная 258 мкКл/кг (названа в честь
немецкого физика В.К. Рентгена –
1845-1923).
ДЕД
– Эквивалентная
доза излучения
– поглощенная
доза излучения мера Дп
, умноженная на средний коэффициент k
качества излучения для биологической
ткани стандартного состава и на
модифицирующий фактор N
– произведение коэффициентов, которое
в настоящее время принимается равным
единице:
ДЕД
= ДПkN
=
ДjkjNj
,
где j
– индекс вида и энергии излучения.
Единица измерения
3иверт (3в) В «СИ»
— Грей (Гр)
Внесистемная –
бэр (биологический эквивалент рентгена)
1 БЭР = 0,01Гр (3в)
Стандартный состав
мягкой биологической ткани принимается
следующим (по массе): 10,1% водорода, 11,1%
углерода, 2,6% азота, 76,2% кислорода.
Коэффициент
качества излучения kпредназначен
для учета влияния микрораспределения
поглощенной энергии на размер вредного
биологического эффекта. Он является
функцией линейной передачи данного
излучения в воде:
L |
3,5 |
7,0 |
23 |
52 |
175 |
k |
1 |
2 |
5 |
10 |
20 |
и выбирается на
основе имеющихся значений коэффициента
относительной биологической эффективности
ОБЭ. Однако значения kне соответствуют
ОБЭ по ряду наблюдаемых вредных эффектов,
например стохастическому эффекту при
низком уровне поглощенной дозе и
нестохастическому эффекту при большой
дозе у человека.
Коэффициент ОБЭ
– отношение поглощенной дозы Д
образцового излучения , вызывающей
определенный биологический эффект, к
поглощенной дозе Д рассматриваемого
излучения, вызывающей тот же самый
биологический эффект.
В качестве
образцового излучения используют
рентгеновское излучение с напряжением
генерирования 180 – 250 кВ и со средней
ЛПЭ, равной 3 кэВ/мкм воды.
Интегральная
доза излучения
– общая доза ионизирующего излучения,
поглощенная всей массой облучаемого
тела или среды.
«СИ» — Джоуль (Дж),
Кулон (Кл)
Внесистемные –
грамм·рад (г·рад), грамм·рентген (г·Р).
Р
Соответственно
единицей мощности дозы является: для
поглощения – Вт/кг и рад/с; для
экспозиционной дозы – А/кг, Р/час или
мкР/с.
Между поглощенными
и экспозиционными дозами существует
следующая связь:
Дn=fДо,
где f
– переходный коэффициент, зависящий
от облучаемого вещества и энергии
фотонов. Для воздуха f=0,88
и мало зависит от энергии фотонов.
Дn=fвозд.До=0,88До
Для воды и мягких
тканей тела человека f=1,
следовательно, поглощенная доза в рядах
численно равна соответствующей дозе в
рентгенах. Это и обуславливает удобство
и использования внесистемных единиц –
рад и рентген. Для костной ткани f
уменьшается с увеличением энергии
фотонов ~ от 4,5 до 1.
Коллективная
эквивалентная доза
Коллективная
эквивалентная доза — сумма индивидуальных
Дi
эквивалентных доз у данной группы
людей: S=
ДiРI
где РI
— число лиц в данной группе , получивших
эквивалентную дозу Дi
. Может быть определена также так :
где
Р(D)dD
– число лиц в данной группе , получивших
эквивалентную дозуна все тело или на
отдельный орга в диапазоне дозы от D
до dD.
Фон
за счет естественных радиоактивных
источников (космические лучи,
радиоактивность недр, воды, радиоактивность
ядер, входящих в состав человеческого
тела и др.) соответствует приблизительно
дозе 125 мбэр. Предельно допустимой
эквивалентной дозой при профессиональном
облучении является 5 бэр за год. Летальной
дозой от -излучений
считается 600 бэр.
Эффективная доза
Эффективная доза (E) — величина, используемая как мера риска возникновения отдалённых последствий облучения всего тела человека и отдельных его органов и тканей с учётом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты.
Одни органы и ткани человека более чувствительны к действию радиации, чем другие: например, при одинаковой эквивалентной дозе возникновение рака в лёгких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения разных органов и тканей следует учитывать с разным коэффициентом, который называется взвешивающим коэффициентом ткани. Умножив значение эквивалентной дозы на соответствующий взвешивающий коэффициент и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект для организма. Взвешивающие коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу.
Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в зивертах или бэрах.
Ожидаемая эффективная доза E(τ) — доза внутреннего облучения от поступивших в организм человека радионуклидов. Время облучения человека такими радионуклидами определяется периодами их полураспада и биологического удержания в организме и может составлять многие месяцы и даже годы. Для целей регулирования полный период накопления дозы устанавливается равным 50 лет для взрослого человека или, если оценивается доза для детей, до достижения 70 лет. При оценке годовой дозы ожидаемая эффективная доза суммируется с эффективной дозой от внешнего облучения за этот же период.
Эффективная и эквивалентная дозы — это нормируемые величины, то есть, величины, являющиеся мерой ущерба (вреда) от воздействия ионизирующего излучения на человека. К сожалению, они не могут быть непосредственно измерены. Поэтому в практику введены операционные дозиметрические величины, однозначно определяемые через физические характеристики поля излучения в точке, максимально возможно приближенные к нормируемым.
Основной операционной величиной является амбиентный эквивалент дозы (синонимы — эквивалент амбиентной дозы, амбиентная доза).
Амбиентный эквивалент дозы Н*(d) — эквивалент дозы, который был создан в шаровом фантоме МКРЕ (международной комиссии по радиационным единицам) на глубине d (мм) от поверхности по диаметру, параллельному направлению излучения, в поле излучения, идентичном рассматриваемому по составу, флюенсу и энергетическому распределению, но мононаправленном и однородном, то есть амбиентный эквивалент дозы Н*(d) — это доза, которую получил бы человек, если бы он находился на месте, где проводится измерение.
Единица амбиентного эквивалента дозы — зиверт (Зв).
Единица измерения дозы облучения / дозы радиации Зиверт. Единица измерения радиации Зиверт. Опасные и повседневные уровни радиации.
Зиверт (обозначение: Зв, Sv) — единица измерения СИ эффективной и эквивалентной доз ионизирующего излучения (используется с 1979 г.). 1 зиверт — это количество энергии, поглощенное килограммом биологической ткани, равное по воздействию поглощенной дозе 1 Гр (1 Грей).
Через другие единицы измерения СИ зиверт выражается следующим образом:1 Зв = 1 Дж/кг = 1 м2 / с2 (для излучений с коэффициентом качества, равным 1,0)
- Равенство зиверта и грея показывает, что эффективная доза и поглощeнная доза имеют одинаковую размерность, но не означает, что эффективная доза численно равна поглощeнной дозе. При определении эффективной дозы учитывается биологическое воздействие радиации, она равна поглощённой дозе, умноженной на коэффициент качества, зависящий от вида излучения и характеризует биологическую активность того или иного вида излучения. Имеет большое значение для радиобиологии.
- Единица названа в честь шведского учeного Рольфа Зиверта.
- Раньше (а иногда и сейчас) использовалась единица бэр(биологический эквивалент рентгена), англ. rem (roentgen equivalent man) — устаревшая внесистемная единица измерения эквивалентной дозы. 100 бэр равны 1 зиверту. Также верно что 100 рентген = 1 зиверт с оговоркой, что рассматривается биологическое действие рентгеновского излучения.
Кратные и дольные единицы зиверта:
Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.
Кратные | Дольные | ||||||
---|---|---|---|---|---|---|---|
величина | название | обозначение | величина | название | обозначение | ||
101 Зв | деказиверт | даЗв | daSv | 10-1 Зв | децизиверт | дЗв | dSv |
102 Зв | гектозиверт | гЗв | hSv | 10-2 Зв | сантизиверт | сЗв | cSv |
103 Зв | килозиверт | кЗв | kSv | 10-3 Зв | миллизиверт | мЗв | mSv |
106 Зв | мегазиверт | МЗв | MSv | 10-6 Зв | микрозиверт | мкЗв | µSv |
109 Зв | гигазиверт | ГЗв | GSv | 10-9 Зв | нанозиверт | нЗв | nSv |
1012 Зв | теразиверт | ТЗв | TSv | 10-12 Зв | пикозиверт | пЗв | pSv |
1015 Зв | петазиверт | ПЗв | PSv | 10-15 Зв | фемтозиверт | фЗв | fSv |
1018 Зв | эксазиверт | ЭЗв | ESv | 10-18 Зв | аттозиверт | аЗв | aSv |
1021 Зв | зеттазиверт | ЗЗв | ZSv | 10-21 Зв | зептозиверт | зЗв | zSv |
1024 Зв | йоттазиверт | ИЗв | YSv | 10-24 Зв | йоктозиверт | иЗв | ySv |
применять не рекомендуется |
Допустимые и смертельные дозы радиации для человека
- Миллизиверт часто используется как мера дозы при медицинских диагностических процедурах (рентгеноскопия, рентгеновская компьютерная томография и т. п.).
- Согласно постановлению главного государственного санитарного врача России за № 11 от 21 апр. 2006 г. «Об ограничении облучения населения при проведении рентгенорадиологических медицинских исследований», п. 3.2, необходимо «обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации».
- Естественное фоновое ионизирующее излучение в среднем равно 2,4 мЗв/год. При этом разброс значений фонового излучения в разных точках Земли составляет 1—10 мЗв/год.
При однократном равномерном облучении всего тела и неоказании специализированной медицинской помощи смерть наступает в 50 % случаев:
- при дозе порядка 3-5 Зв из-за повреждения костного мозга в течение 30—60 суток;
- 10 ± 5 Зв из-за повреждения желудочно-кишечного тракта и лeгких в течение 10—20 суток;
- > 15 Зв из-за повреждения нервной системы в течение 1—5 суток.
Вынужденные диагностические дозы рентген облучения
Величина эквивалентной поглощенной дозы при каждом рентгенобследовании может значительно отличаться в зависимости от вида обследования. Доза облучения также зависит от года выпуска медицинской аппаратуры, рабочей нагрузки на него.
Важно: современная рентгеноаппаратура дает излучения в десятки раз более низкие, чем предшествующая. Можно сказать так: новейшая цифровая рентгенотехника безопасна для человека
Но все же попытаемся привести усредненные цифры доз, которые может получать пациент
Обратим внимание на различие данных, выдаваемых цифровой и обычной рентгеноаппаратурой:
- цифровая флюорография: 0,03-0,06 мЗв, (самые современные цифровые аппараты дают излучение в дозе от 0,002 мЗв, что в 10 раз ниже их предшественников);
- плёночная флюорография: 0,15-0,25 мЗв, (старые флюорографы: 0,6-0,8 мЗв);
- рентгенография органов грудной полости: 0,15-0,4 мЗв.;
- дентальная (зубная) цифровая рентгенография: 0,015-0,03 мЗв., обычная: 0,1-0,3 мзВ.
Во всех перечисленных случаях речь идет об одном снимке. Исследования в дополнительных проекциях увеличивают дозу пропорционально кратности их проведения.
Рентгеноскопический метод (предусматривает не фотографирование области тела, а визуальный осмотр рентгенологом на экране монитора) дает значительно меньшее излучение за единицу времени, но суммарная доза может быть выше из-за длительности процедуры. Так, за 15 минут рентгеноскопии органов грудной клетки общая доза полученного облучения может составить от 2 до 3,5 мЗв.
Диагностика желудочно-кишечного тракта – от 2 до 6 мЗв.
Компьютерная томография применяет дозы от 1-2 мЗв до 6-11 мЗв, в зависимости от исследуемых органов. Чем более современным является рентгеноаппарат, тем более низкие он дает дозы.
Отдельно отметим радионуклидные методы диагностики. Одна процедура, основанная на радиофармпрепарате, дает суммарную дозу от 2 до 5 мЗв.
Сравнение эффективных доз радиации, полученных во время наиболее часто используемых в медицине диагностических видов исследований, и доз, ежедневно получаемых человеком из окружающей среды, представлено в таблице.
Процедура | Эффективная доза облучения | Сопоставимо с природным облучением, полученным за указанный промежуток времени |
Рентгенография грудной клетки | 0,1 мЗв | 10 дней |
Флюорография грудной клетки | 0,3 мЗв | 30 дней |
Компьютерная томография органов брюшной полости и таза | 10 мЗв | 3 года |
Компьютерная томография всего тела | 10 мЗв | 3 года |
Внутривенная пиелография | 3 мЗв | 1 год |
Рентгенография желудка и тонкого кишечника | 8 мЗв | 3 года |
Рентгенография толстого кишечника | 6 мЗв | 2 года |
Рентгенография позвоночника | 1,5 мЗв | 6 месяцев |
Рентгенография костей рук или ног | 0,001 мЗв | менее 1 дня |
Компьютерная томография – голова | 2 мЗв | 8 месяцев |
Компьютерная томография – позвоночник | 6 мЗв | 2 года |
Миелография | 4 мЗв | 16 месяцев |
Компьютерная томография – органы грудной клетки | 7 мЗв | 2 года |
Микционная цистоуретрография | 5-10лет: 1,6 мЗв Грудной ребенок: 0,8 мЗв | 6 месяцев 3 месяца |
Компьютерная томография – череп и околоносовые пазухи | 0,6 мЗв | 2 месяца |
Денситометрия костей (определение плотности) | 0,001 мЗв | менее 1 дня |
Галактография | 0,7 мЗв | 3 месяца |
Гистеросальпингография | 1 мЗв | 4 месяца |
Маммография | 0,7 мЗв | 3 месяца |
Важно: Магнитно-резонансная томография не использует рентгеновское облучение. При этом виде исследования на диагностируемую область направляется электромагнитный импульс, возбуждающий атомы водорода тканей, затем измеряется вызывающий их отклик в сформированном магнитном поле с уровнем высокой напряженности
Некоторые люди ошибочно причисляют этот метод к рентгеновским.
Нормативы принятого закона о радиационной безопасности допускают безопасную дозу, полученную человеком за 70 лет жизни до 70 мЗв.
Облучение при рентгене — риски, дозы, техника безопасности, видео:
Лотин Александр Владимирович, врач-рентгенолог
80, всего, сегодня
(51 голос., средний: 4,55 из 5)
Эквивалентная доза
Установлено,
что при облучении одной и той же энергией
биологической ткани человека (то есть
при получении одной и той же дозы), но
различными видами лучей последствия
для здоровья будут разными. Например,
при облучении альфа-частицами тела
человека вероятность заболеть раком
значительно выше, чем при облучении
бета-частицами или гамма-лучами. Поэтому
для биологической ткани была введена
характеристика — эквивалентная доза.
Эквивалентная
доза (HTR)
— поглощенная доза в органе или ткани,
умноженная на соответствующий коэффициент
качества излучения WR
данного вида излучения R.
Введена
для оценки последствий облучения
биологической ткани малыми дозами
(дозами, не превышающими 5 предельно
допустимых доз при облучении всего тела
человека), то есть 250 мЗв/год. Ее нельзя
использовать для оценки последствий
облучения большими дозами.
Доза
эквивалентная равна:
HT.R
= DT.R
· WR,(8)
где
DT.R
— поглощенная доза биологической тканью
излучением R;
WR
— весовой множитель (коэффициент качества)
излучения R
(альфа-частиц, бета-частиц, гамма-квантов
и др.), учитывающий относительную
эффективность различных видов излучения
в индуцировании биологических эффектов
(табл. 1). Этот множитель зависит от многих
факторов, в частности от величины
линейной передачи энергии, от плотности
ионизации вдоль трека ионизирующей
частицы и т.д.
Формула
(8) справедлива для оценки доз как
внешнего, так и внутреннего облучения
только отдельных органов и тканей или
равномерного облучения всего тела
человека.
При
воздействии различных видов излучений
одновременно с различными взвешивающими
коэффициентами эквивалентная доза
определяется как сумма эквивалентных
доз для всех этих видов излучения R:
HT
= Σ
HT.R(9)
Установлено,
что при одной и той же поглощенной дозе
биологический эффект зависит от вида
ионизирующих излучений и плотности
потока излучения.
Примечание.
При
использовании формулы (8) средний
коэффициент качества принимают в данном
объеме биологической ткани стандартного
состава: 10,1% водорода, 11,1% углерода, 2,6 %
азота, 76,2 % кислорода.
Единица
измерения эквивалентной дозы в системе
СИ — Зиверт
(Зв).
Зиверт
— единица
эквивалентной дозы излучения любой
природы в биологической ткани, которая
создает такой же биологический эффект,
как и поглощенная доза в 1 Гр образцового
рентгеновского излучения с энергией
фотонов 200 кэВ, Используются также
дробные единицы — мкЗв, мЗв. Существует
и внесистемная единица — бэр
(биологический
эквивалент рада), которая постепенно
изымается из пользования.
1
Зв = 100
бэр.
Используются
также дробные единицы — мбэр, мкбэр.
Таблица
1. Коэффициенты качества излучения
Вид |
Коэффициенты |
Фотоны |
1 |
Электроны |
1 |
Нейтроны |
|
< |
5 |
от |
10 |
> |
20 |
> |
10 |
> |
5 |
Протоны |
5 |
Альфа-частицы, |
20 |
Примечание. |
Примечание.
Коэффициент
WR
учитывает зависимость неблагоприятных
биологических результатов облучения
в малых дозах от полной линейной передачи
энергии (ЛПЭ) излучения. В таблице 2
приведена зависимость весового
коэффициента качества WR
от ЛПЭ.
Таблица
2. Зависимость коэффициента качества
WR
от ЛПЭ
ЛПЭ |
нЖд/м |
≤0,56 |
1Д |
3,7 |
8,5 |
≥28 |
в |
кэВ/мкм |
≤3,5 |
7,0 |
23 |
63 |
≥175 |
WR |
1 |
2 |
5 |
10 |
20 |
Мощность
эквивалентной дозы —
отношение приращения эквивалентной
дозы dH
за время dt
к
этому интервалу времени:
Единицы
измерения мощности эквивалентной дозы
мЗв/с, мкЗв/с, бэр/с, мбэр/с и т.д.