Радиация
Содержание:
- Норма радиоактивного излучения
- В каких единицах измеряется радиоактивность?
- Действие проникающей радиации
- Надзор и нормативные документы
- Источники радиоактивного излучения
- Поведение в ситуации потенциальной радиационной опасности.
- Влияние радиации на человека
- Защищает ли йод от радиации
- Что такое естественная радиоактивность материалов
- Влияние радиации на состояние здоровья людей
- Употребление йода может защитить от радиационного заражения
- В чём измеряется облучение?[править]
- Другие виды радиоактивности.
- Действие ионизирующей радиации
Норма радиоактивного излучения
Институт медико-биологических проблем формирования здоровья в Москве пришел к выводу, что продолжительность жизни на 20% зависит от состояния здоровья, еще на 20% от окружающей среды, на 10% от уровня медобслуживания и на 50% от образа жизни, режима питания и отдыха. Радиоактивное излучение составляет 5% экологическим проблем цивилизации.
Какие бывают нормы радиоактивности?
Радиоактивное облучение техногенного характера совместно с естественными источниками не должно превышать индивидуальную предельно допустимую дозу (ИПДД).
НРБ – нормы радиационной безопасности, выделяют 2 категории граждан, подвергающихся воздействию радиации.
Категория А – профессиональные сотрудники, которые работают с источниками ионизирующих излучений.
Категория B – часть населения, вынужденная проживать или работать в местах, где могут находиться радиоактивные вещества.
При ликвидации аварий превышение дозовых пределов допускается только ради спасения жизни людей и отсутствия возможности принять меры защиты.
Участвовать в спасательных мероприятиях могут только мужчины старше 30 лет, при их добровольном согласии в письменном виде, после полного информирования о возможных последствиях для здоровья.
В каких единицах измеряется радиоактивность?
Мерой радиоактивности радионуклида в соответствии с системой измерений СИ, является его активность, которая измеряется в Беккерелях (Бк). Один Бк равен 1 ядерному превращению в секунду. Кроме того, в качестве меры радиоактивности широко используется не системная величина Кюри (Ки) и ее производные (милликюри, микрокюри и т.д.). Численно 1 Кюри = 3.7*1010 Бк, а 1 Бк = 0.027нКи (наноКюри). Содержание активности в единице массы вещества характеризуется удельной активностью, которая измеряется в Бк/кг (л).
В каких единицах измеряется ионизирующее излучение (рентгеновское и гамма)?
Мерой воздействия ионизирующего излучения является экспозиционная доза и измеряется она в Рентгенах (Р) и его производных (млР, мкР), а количественную сторону его характеризует мощность экспозиционной дозы,, которая измеряется в Рентгенах/сек (Р/сек.) и его производных (млР/час, мкР/час, мкР/сек).
Рентген – это доза рентгеновского или гамма-излучения в воздухе, при которой на 0.001293 г воздуха образуются ионы с суммарным зарядом в одну электростатическую единицу количества электричества каждого знака.
Эквивалентная доза – она равна произведению поглощенной дозы на средний коэффициент качества ионизирующего излучения (Например: коэффициент качества гамма-излучения составляет 1, а альфа-излучения – 20).
Единица измерения эквивалентной дозы – бэр (биологический эквивалент рентгена) и его дольные единицы: миллибэр (мбэр) микробэр ( мкбэр) и т.д., 1 бэр = 0,01 Дж/кг-1. Единица измерения эквивалентной дозы в системе СИ – зиверт, Зв,
1Зв=1Дж/кг-1= 100 бэр.
1 мбэр = 1*10-3 бэр; 1 мкбэр = 1*10-6 бэр;
Поглощенная доза — количество энергии ионизирующего излучения которое поглощено в элементарном объеме, отнесенной к массе вещества в этом объеме.
Единица поглощенной дозы – рад и его дольные значения, 1 рад = 0,01 Дж/кг.
Единица поглощенной дозы в системе СИ – грей, Гр, 1Гр=100рад=1Дж/кг-1
Доза – это сокращенное название эквивалентной дозы — мощности экспозиционной дозы умноженной на время экспозиции, единица измерения бэр.
Мощность дозы – сокращенное название мощности эквивалентной дозы.
Мощность эквивалентной дозы – это отношение приращения эквивалентной дозы за интервал времени к этому интервалу времени, единица измерения бэр/час, Зв/час.
В каких единицах измеряется альфа- и бета-излучение?
Количество альфа- и бета-излучения определяется как величина плотности потока частиц с единицы площади, в единицу времени a-частиц*мин/см2, b-частиц*мин/см2.
Действие проникающей радиации
Под проникающей радиацией понимают нейтронные потоки и излучения, которые исходят из места ядерного взрыва. Действие такой волны продолжается от 10 до 15 минут. В случаях, когда взрыв происходит под водой, радиацию полностью поглощают её толща и пары. В приземных воздушных слоях поникающее излучение распространяется от эпицентра взрыва на расстояние до 3 км.
Существуют разные виды ядерных взрывов с одним либо двумя факторами поражения, связанными с излучениями, имеющими различное происхождение. Факт проникающей радиации является общей чертой для всех ядерных взрывов. Что касается дополнительного фактора, в данном случае происходит поражение радиацией окружающей местности.
Проникающая радиация может иметь источники в виде:
- ядерной реакции. Её продолжительность составляет примерно 0,07 мк/секунду с выпуском почти 100% квантовых и нейтронных частиц;
- осколков деления. Они выпускают нейтроны через 2-3 секунды после взрыва. Выпуск квантов происходит дольше;
- наведённой активностью. Она появляется, когда атомы воздуха захватывают нейтроны.
Исходя из этого становится ясно, что основной энергетический поток при проникающем радиоактивном воздействии исходит в первые секунды после того как произошёл взрыв. Продолжительность остаточных излучений может наблюдаться ещё в течение длительного времени.
Воздействие излучения и нейтронного потока на объекты происходит в одно и то же время. Именно по этой причине уже давно обозначено понятие суммарной дозы. Когда в воздухе происходит распространение лучей и нейтронов, оно сопровождается их многократным рассеиванием. Таким образом, проникающая радиация действует не только с того направления, в котором произошёл взрыв, но и с любого другого, хотя и меньше.
Уровень поражающего действия проникающей радиации также определяет величина дозы, зависящая от ядерных боеприпасов. Мощность взрыва и его разновидность тоже имеют огромное значение, равно как и расстояние от его центра. Интересным фактом является то, что если речь идёт о взрывах, имеющих малую и среднюю мощность, проникающая радиация будет воздействовать на объекты гораздо меньше, чем ударная волна и световое излучение. В качестве основного фактора поражения проникающую радиацию рассматривают, когда взрываются боеприпасы, имеющие малую и сверхмалую мощность либо боеприпасы на нейтронной основе. У них излучение возникает в результате процессов, происходящих с быстрыми нейтронами.
Надзор и нормативные документы
Надзор в этой сфере осуществляет Роспотребнадзор специальными службами. Контроль за состоянием радиоактивного загрязнения окружающей природной среды осуществляется Федеральной службой России по гидрометеорологии и мониторингу окружающей среды, а за уровнем радиационной безопасности населения — органами Министерства здравоохранения РФ.
В России дозы радиации для человека устанавливает СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности НРБ-99/2009» и ОСПОРБ-99. По ним предельно допустимая доза радиации для человека составляет не более 5 мЗв или 0,5 БЭР, или 0,5 Р в год.
Источники радиоактивного излучения
Каковы же источники радиации? Они подразделяются на естественные и искусственные.
Естественные источники радиации
солнечная радиация
К естественным источникам радиации относятся:
- почва, вода и атмосфера;
- космические объекты и, конечно, Солнце;
- энергия, выделяемая при распаде некоторых химических элементов, заботливо хранимых Природой в земной коре;
- человек содержит некоторые радиоактивные элементы (рубидий-87 и калий-40), поэтому сам по себе является источником персонального радиационного фона.
Вся история формирования биосферы Земли происходит на фоне естественного радиоактивного излучения. До определённых значений он не является чем-то противоестественным для человека.
Природа, к сожалению, не наделила людей органами чувств, способных реагировать на облучение. Однако существуют физические величины и единицы их измерения, характеризующие как само излучение, так и степень его воздействия на человека.
В чём же измеряется радиация? В качестве единицы измерения дозы ионизирующего излучения за определённый промежуток времени используют 1 рентген. Это чрезвычайно большая доза облучения, поэтому на практике применяют его миллионную часть, называемую микрорентгеном (мкР). Естественный радиационный фон в норме составляет 10–15 микрорентген в час.
Искусственные источники радиации
атомная электростанция
Искусственные источники радиации возникли в результате техногенной деятельности человечества:
- атомные электростанции;
- места добычи полезных ископаемых, содержащих радиоактивные компоненты;
- полигоны ядерных испытаний;
- захоронения ядерных отходов;
- военная техника с ядерными боеголовками;
- медицинская аппаратура, использующая радиоактивные изотопы.
Применение радиации в медицине
Глубокое изучение свойств радиоактивного излучения, позволило найти активное применение радиации в медицине. Здесь можно выделить три направления.
-
Рентгеновская диагностика.
- Введение в организм человека радиоактивных изотопов.
- Лучевая терапия.
В рентгеновской диагностике используется различная проникающая способность рентгеновских лучей при прохождении через мягкие ткани и кости. Результат такого обследования фиксируется на фотоплёнке или экране монитора.
Введение в организм человека небольшого количества радиоактивных изотопов, позволяет по излучению фиксировать их локализацию и концентрацию в определённом органе. Такая диагностика чрезвычайно важна для выявления ряда патологий.
Для лечения онкологических заболеваний применяют лучевую терапию. Метод основан на том, что излучение, создаваемое рентгеновской или гамма-установкой, остро направлено воздействует на очаг онкологии и подавляет способность злокачественных клеток к росту и размножению.
Перечисленные методы диагностики и терапии вносят дополнительную лепту в получаемую человеком дозу радиации.
Поведение в ситуации потенциальной радиационной опасности.
Если мне сказали, что недалеко взорвалась АЭС, куда бежать?
Никуда не бежать. Во-первых, вас могли обмануть. Во-вторых, в случае действительной опасности лучше всего довериться действиям профессионалов. А для того, чтобы об этих самых действиях узнать, желательно находиться дома, включить радиоприемник или телевизор
В качестве меры предосторожности можно порекомендовать плотно закрыть окна и двери, не выпускать детей и домашних животных на улицу, провести влажную уборку квартиры
Какие лекарства нужно выпить, чтобы от радиации не было вреда?
При авариях на АЭС в атмосферу выбрасывается большое количество радиоактивного изотопа йода-131, который накапливается в щитовидной железе, что приводит к внутреннему облучению организма и может вызвать рак щитовидной железы. Поэтому в первые дни после загрязнения территории (а лучше до этого загрязнения) необходимо насытить щитовидную железу обычным йодом, тогда организм будет невосприимчив к радиоактивному его изотопу. Пить йод из пузырька исключительно вредно, существуют разнообразные таблетки — обычный йодид калия, йод-актив, йодомарин и т.п., все они представляют собой тот же калий-йод.
Если калий-йода поблизости нет, а территория загрязнена, то в крайнем случае можно капнуть пару капель обычного йода на стакан воды или киселя, и выпить.
Период полураспада йода-131 – чуть более 8 суток. Соответственно, через две недели можно в любом случае о принятии йода внутрь забыть.
Влияние радиации на человека
Радиация и ее влияние на человека может вызывать серьезные нарушения в здоровье. Поражение касается не только организма того, кто подвергся облучению, но и следующих поколений, так как радиация влияет на генетический аппарат. Поэтому радиоактивное влияние имеет два эффекта:
- Соматический – возникают такие заболевания, как лейкозы, онкологические образования органов, локальные лучевые поражения и лучевая болезнь.
- Генетический – приводит к генным мутациям и изменениям структуры хромосом.
Облучение хронического характера несет меньшую нагрузку на организм, чем разовое в той же дозе, ведь успевают происходить восстановительные процессы. Скапливание радионуклидов в организме происходит неравномерно. Более всего страдают дыхательные и пищеварительные органы, через которые в организм проникают радионуклиды, печень и щитовидная железа. Среди онкологий, вызванных радиацией, наиболее распространены рак щитовидки и молочной железы.
Лучевой лейкоз, то есть рак крови, может обнаружиться по прошествии четырех-десяти лет после облучения. Он особо опасен для тех, кто еще не достиг пятнадцатилетнего возраста. То, что радиация может приводить к этой болезни, свидетельствует ее рост у жителей Хиросимы и Нагасаки. Кроме того, было подмечено, что смертность среди рентгенологов увеличена именно по причине лейкоза.
Облучение радиацией также чревато онкологией легких. В частности, диагноз распространен среди шахтеров, работающих на урановых рудниках.
Самым известным последствием радиационного действия является лучевая болезнь. Ее провоцируют как разовые облучения, так и хронические. Большие дозы могут привести к летальному исходу.
Мутации, которые проходят в генетическом аппарате в следствие облучения, на данный момент изучены не достаточно. Это обусловлено тем, что они способны проявляться через многие годы в разных поколениях. Тогда становится трудно доказать, по какой именно причине произошла та или иная мутация.
Иногда они проявляются сразу. Такие мутации называют доминантными. Существуют рецессивные мутации, дающие знать о себе через поколения. Хотя они могут не выявиться в новых поколениях вообще. Мутации выявляются физическими или психическими нарушениями в здоровье потомков. Для этого поврежденному гену нужно соединиться с геном, обладающим одинаковым с ним повреждением.
При внешних облучениях появляются ожоги кожных и слизистых покровов, разные по степеням тяжести.
Защищает ли йод от радиации
Йод совершенно никак не может защитить от радиации. Но в некотором роде помочь он может. Дело в том, что щитовидная железа накапливает йод для нужд организма. Во время радиационного выброса в воздухе и на различных предметах (включая продукты питания) находится много радиоактивного йода-131. Щитовидная железа устроена так, что она активно вбирает в себя любой йод, пока не ”заполнит хранилища”. В итоге, во время радиационных катастроф рекомендуется принимать йод, чтобы щитовидная железа получила то, что ей надо. Лишний йод (радиоактивный) выведется из организма. В противном случае он может привести к развитию рака.
Простой йод из аптечки незаменим при некоторых видах загрязнений, но просто так пичкаться им не стоит.
О необходимости принимать йод должно сообщить МЧС. Если во время катастрофы в воздухе находится небольшое количество радиоактивного йода, то ударная его доза может только навредить организму. Это же относится и к другим веществам (включая витамины), которые считаются радиопротекторами. Если рядом есть АЭС, то лучше иметь запас этих веществ, но принимать их, только если скажут.
Ходить с дозиметром не обязательно. Если что-то случится, вам скажут. Должны, по крайней мере.
Что такое естественная радиоактивность материалов
Естественная радиация в природе существовала всегда. Один из ее источников – излучение земной коры. В ее толще залегают породы, из которых производят многочисленные строительные материалы. Многие из них до сих пор хранят следы радиоактивного прошлого нашей планеты.
К наиболее вредным строительным материалам причисляют:
- гранит
- кварцевый диорит
- графит
- туф
- пемзу
Все они выделяют достаточно большое количество радона, поэтому для внутренней отделки перечисленные материалы лучше не использовать. Кирпич, бетон и дерево в этом смысле считаются сравнительно безопасными. Причем радиоактивность силикатного кирпича ниже, чем красного.
Относительно невысока удельная активность радионуклидов у карбонатных горных пород – мрамора и известняка. Средним уровнем естественной радиоактивности отличаются песок и гравий. Уровень радиации стекловолокна, фосфогипса обычно находится в допустимых пределах, но ради собственной безопасности стоит проверять и их.
Распространенные заблуждения о радиоактивности некоторых стройматериалов
Радиоактивность древесины выше, чем кирпича. Это заблуждение появилось после того, как люди начали измерять уровни радиационного фона внутри домов, построенных из этих материалов. При этом самыми высокими оказались показатели, снятые в деревянных строениях. На самом деле причина этого в том, что большинство деревянных домов – малоэтажные, то есть комнаты там расположены близко к земле, которая считается основным естественным источником радона.
Бетон – опасный радиоактивный материал. Мнение о высокой радиоактивности бетона распространилось после серии статей о повышенном радиационном фоне в панельных домах. На самом деле это не так. Радиоактивность этого материала многократно ниже, чем у кирпича. К тому же, основная его часть обычно сконцентрирована в фундаменте дома. Еще один аргумент: на крупных предприятиях по производству бетона безопасность продукции контролируют, а в качестве сырья используют щебень, добытый из сертифицированных мест.
Но тем не менее опасность, связанная с радиоактивностью наполнителей для изготовления этого строительного материала существует. Поэтому, если вы замешиваете бетон самостоятельно, желательно проверить используемый для этого щебень и песок дозиметром. Это поможет убедиться в том, что данный материал можно использовать при строительстве жилых зданий. Проверка требуется в основном гранитному щебню, так как гравийный материал в зону риска практически не входит.
В чем опасность радиоактивных строительных материалов
Радиоактивность некоторых используемых в строительстве материалов может нанести вред здоровью. При распаде радионуклидов, входящих в их состав (радия-226, калия-40, тория-232), выделяется радиоактивный газ радон. Его объемная активность в воздухе непроветриваемых помещений (подвалов, подземных станций метро), бывает в 10 и более раз выше, чем в открытой атмосфере.
Радон выделяется в воздух в два этапа. Сначала он проникает из материала в поры элементов строительного объекта. Затем постепенно распространяется через микрощели и трещины. При этом часть его распадается и попадает в воздух помещения. Больше всего радона скапливается на первых этажах зданий.
Опасность радиоактивных строительных материалов в том, что исходящее от них излучение может значительно ухудшать экологию помещения. Вследствие этого людей беспокоят:
- головные боли,
- аллергия,
- плохое самочувствие.
Более того, поступая в легкие, радон распадается с выбросом альфа-частиц. Это может вызывать микроожоги тканей и их злокачественное перерождение.
Как проверить стройматериал на радиоактивность
Уровень природной радиоактивности строительных материалов ограничивается нормами радиационной безопасности (НРБ –99/2009). Этот нормативный документ устанавливает три класса стройматериалов с разной величиной эффективной удельной активности природных радионуклидов (Аэфф). Так, для строительства и ремонта жилых и общественных зданий допускается использовать материалы с Аэфф не более 370 Бк/кг.
Дозиметр поможет вам аргументированно отклонить даже выгодное предложение о покупке вредных строительных материалов, которые иногда поступает от недобросовестных продавцов и поставщиков. Кроме того, с этим прибором вы легко проверите свою квартиру, офис, производственное помещение на предмет радиационной безопасности.
Влияние радиации на состояние здоровья людей
Влияние радиации на людской организм называется облучением. В процессе этого воздействия радиоактивная энергия внедряется в клетки, при этом разрушая их. При облучении могут проявляться самые разнообразные болезни, типа инфекционных осложнений, нарушений обмена веществ, злокачественных опухолей и лейкоза, бесплодия, катаракты и многого другого. В особенности необычайно остро радиация может воздействовать на процесс деления клеток, из-за этого она представляет чрезвычайную опасность для детского организма.
Людской организм может реагировать не столько на саму радиацию, как на ее источники. Проникновение в организм радиоактивных веществ может происходить разными путями. Например, появление ее в кишечнике может происходить при приеме пищи или воды, в легких — в процессе дыхания, а на коже или через нее при проведении медицинской диагностики с помощью радиоизотопов. Это будет так называемым внутренним облучением.
Как вывести радиацию из организма? Таким вопросом, несомненно, задаются многие люди. Так, например, известно, что при употреблении отдельных продуктов питания, а также витаминов можно оказать помощь организму в его очистке от незначительных радиоактивных доз. Хотя во времена Чернобыльской катастрофы ходили слухи, что представители КГБ знали, как вывести радиацию, находясь в зоне, и выходили из нее без вреда для организма. Домыслы опирались на то, что они якобы принимали внутрь какой-то особый совершенно секретный активированный уголь или какой-то аналог.
Употребление йода может защитить от радиационного заражения
Ложь
Употребление йода либо каких-нибудь его соединений абсолютно не противостоит негативному воздействию радиации. Так почему же медиками рекомендуется принятие йода, когда происходят техногенные катастрофы, при которых происходит выброс радионуклидов в атмосферу? А все потому, что когда в атмосфере или в воде обнаруживается присутствие радиоактивного йода-131, он весьма стремительно проникает в организмы людей. После чего происходит его накопление в щитовидных железах, с резким повышением рисков по развитию рака и прочих болезней, связанных с этими «нежными» органами. Заблаговременно «наполнив по максимуму» йодные депо в щитовидных железах, можно снизить захват радиоактивного йода и, следовательно, предохранить ткани от дальнейших накоплений радиации.
В чём измеряется облучение?[править]
Есть единицы для измерения экспозиционной, поглощённой дозы и эквивалентной дозы. Разница между ними заключается в способе измерения, вкратце так: эквивалентная доза измеряется по последствиям для организма, которые сравниваются с последствиями от некой эталонной дозы облучения. Поглощённая доза измеряется по замерам энергии излучения и массы вещества, которое его поглотило. Экспозиционная — по подсчёту ионов в сухом воздухе. Какие единицы чему соответствуют?
Рентген — единица экспозиционной дозы. В эквивалентной дозе рентгену соответствует бэр, в поглощённой дозе — рад. Для обывателя рентген, бэр и рад — примерно одно и то же.
Зиверт — единица эквивалентной дозы. В поглощённой дозе зиверту соответствует грэй. Для обывателя между зивертом и грэем также разницы особой нет.
1 Зв = 100 бэр.
1 Гр = 100 рад.
В общем, вторые две единицы в сто раз больше первых трёх.
Какая доза чем грозит? Вот несколько примерных доз и их последствия:
- 5 рентген: предельно допустимая «безвредная» доза в год для людей, работающих с радиацией или рентгеновскими аппаратами.
- 25 рентген: предельно допустимая доза, которую можно однократно схватить как «оправданный риск» в особых обстоятельствах. Может вызвать лёгкую лучевую болезнь.
- 100 рентген: начало тяжёлой лучевой болезни, поражение костного мозга.
- 300—500 рентген: примерно каждого второго, схватившего такую дозу, спасти не удаётся. Основной фактор смертности — выход из строя костного мозга, болеть месяц-другой.
- 1000 рентген: гарантированная смерть, медленная и довольно мучительная. Основной фактор смертности — пищеварительные расстройства и отравление радиотоксинами, умирать около недели.
- 10 000 рентген: достаточно быстрая смерть от выхода из строя нервной системы или разрушения миокарда, лежать без сознания не больше суток.
- 100 000 рентген: похоронят в свинцовом гробу.
- 1 000 000 рентген: на могиле вместо цветов вырастут гигантские грибы.
- 10 000 000 рентген: на фотографиях покойного выпадут все волосы.
Пациенту, схватившему от 500 до 1000 рентген, плохо становится далеко не сразу. Он может ещё около недельки гулять, веселиться, радоваться, что его досрочно демобилизовали. А уже на вторую-третью недельку начинают проявляться последствия отказа костного мозга, и пациент начинает умирать от малокровия.
Другие виды радиоактивности.
Помимо альфа- и бета-распадов, известны и другие типы самопроизвольных радиоактивных превращений. В 1938 американский физик Луис Уолтер Альварес открыл третий тип радиоактивного превращения – электронный захват (К-захват). В этом случае ядро захватывает электрон с ближайшей к нему энергетической оболочки (К-оболочки). При взаимодействии электрона с протоном образуется нейтрон, а из ядра вылетает нейтрино, уносящее избыток энергии. Превращение протона в нейтрон не изменяет массу нуклида, но уменьшает заряд ядра на единицу. Следовательно, образуется новый элемент, находящийся в периодической таблице на одну клетку левее, например, из получается стабильный нуклид (именно на этом примере Альварес открыл этот тип радиоактивности).
При К-захвате в электронной оболочке атома на место исчезнувшего электрона «спускается» электрон с более высокого энергетического уровня, излишек энергии либо выделяется в виде рентгеновского излучения, либо расходуется на вылет из атома более слабо связанных одного или нескольких электронов – так называемых оже-электронов, по имени французского физика Пьера Оже (1899–1993), открывшего этот эффект в 1923 (для выбивания внутренних электронов он использовал ионизирующее излучение).
В 1940 Георгий Николаевич Флеров (1913–1990) и Константин Антонович Петржак (1907–1998) на примере урана открыли самопроизвольное (спонтанное) деление, при котором нестабильное ядро распадается на два более легких ядра, массы которых различаются не очень сильно, например: + + 2n. Этот тип распада наблюдается только у урана и более тяжелых элементов – всего более чем у 50 нуклидов. В случае урана спонтанное деление происходит очень медленно: среднее время жизни атома 238U составляет 6,5 миллиарда лет. В 1938 немецкий физик и химик Отто Ган, австрийский радиохимик и физик Лизе Мейтнер (в ее честь назван элемент Mt – мейтнерий) и немецкий физикохимик Фриц Штрассман (1902–1980) обнаружили, что при бомбардировке нейтронами ядра урана делятся на осколки, причем вылетевшие из ядер нейтроны способны вызвать деление соседних ядер урана, что приводит к цепной реакции). Этот процесс сопровождается выделением огромной (по сравнению с химическими реакциями) энергии, что привело к созданию ядерного оружия и строительству АЭС.
В 1934 дочь Марии Кюри Ирэн Жолио-Кюри и ее муж Фредерик Жолио-Кюри открыли позитронный распад. В этом процессе один из протонов ядра превращается в нейтрон и антиэлектрон (позитрон) – частицу с той же массой, но положительно заряженную; одновременно из ядра вылетает нейтрино: p n + e+ + 238. Масса ядра при этом не изменяется, а смещение происходит, отличие от b–-распада, влево, b+-распад характерен для ядер с избытком протонов (так называемые нейтронодефицитные ядра). Так, тяжелые изотопы кислорода 19О, 20О и 21О b–-активны, а его легкие изотопы 14О и 15О b+-активны, например: 14O 14N + e+ + 238. Как античастицы, позитроны сразу же уничтожаются (аннигилируют) при встрече с электронами с образованием двух g-квантов. Позитронный распад часто конкурирует с К-захватом.
В 1982 была открыта протонная радиоактивность: испускание ядром протона (это возможно лишь для некоторых искусственно полученных ядер, обладающих избыточной энергией). В 1960 физико-химик Виталий Иосифович Гольданский (1923–2001) теоретически предсказал двухпротонную радиоактивность: выбрасывание ядром двух протонов со спаренными спинами. Впервые она наблюдалась в 1970. Очень редко наблюдается и двухнейтронная радиоактивность (обнаружена в 1979).
В 1984 была открыта кластерная радиоактивность (от англ. cluster – гроздь, рой). При этом, в отличие от спонтанного деления, ядро распадается на осколки с сильно отличающимися массами, например, из тяжелого ядра вылетают ядра с массами от 14 до 34. Кластерный распад также наблюдается очень редко, и это в течение длительного времени затрудняло его обнаружение.
Некоторые ядра способны распадаться по разным направлениям. Например, 221Rn на 80% распадается с испусканием b-частиц и на 20% – a-частиц, многие изотопы редкоземельных элементов (137Pr, 141Nd, 141Pm, 142Sm и др.) распадаются либо путем электронного захвата, либо с испусканием позитрона. Различные виды радиоактивных излучений часто (но не всегда) сопровождаются g-излучением. Происходит это потому, что образующееся ядро может обладать избыточной энергией, от которой оно освобождается путем испускания гамма-квантов. Энергия g-излучения лежит в широких пределах, так, при распаде 226Ra она равна 0,186 МэВ, а при распаде 11Ве достигает 8 МэВ.
Илья Леенсон
Действие ионизирующей радиации
Под ионизирующим излучением понимают разновидность энергии, которую высвобождают атомы. Эта энергия представляет собой электромагнитные волны двух видов:
- гамма-излучение;
- рентгеновское излучение;
- частицы (в виде альфа-, бета-частиц и нейтронов).
Собственно, радиоактивность — не что иное как результат спонтанного распада атомов. При распаде атомов всегда возникает избыток энергии или форма ионизирующего излучения. Уже упоминалось о нестабильности атомного ядра. Те его элементы, которые являются нестабильными, возникают при ядерном распаде и обладают ионизирующим излучением, получили название радионуклидов. В свою очередь, радионуклиды принято идентифицировать на основании типа излучения, испускаемого ими, его энергии и периода полураспада.
Ежедневно мы подвергаемся как естественному, так и искусственному радиационному излучению. Под естественными источниками следует понимать больше 60 веществ, средой обитания для которых служат почва, воздух и вода. Например, образование газа радона в естественных условиях происходит в горных породах. Каждый день мы получаем определённое количество радионуклидов, которые находятся в пище, воде и воздухе.
Если человек находится на слишком большой высоте, на него начинают воздействовать космические лучи. В целом, около 80% дозы радиации, получаемой нами каждый год — это фоновое излучение в виде наземных и космических источников. Уровни радиации в них различны. Иногда они могут составлять в 100 или 200 раз больше средней величины.
Кроме естественных источников ионизирующего излучения, на нас могут воздействовать и источники искусственного происхождения. Прежде всего, это производство ядерной энергии на атомных электростанциях. Медицинская аппаратура, применяемая в диагностических и лечебных целях, тоже является искусственным радиационным источником.
Степень повреждения живого организма радиационным воздействием определяется полученной дозой облучения либо поглощённой дозой. Её выражают в единицах, называемых греями (Гр). Что касается эффективной дозы, применяемой с целью измерения показателей излучения и уровня его вреда, её измеряют в зивертах (Зв). При этом учитывают тип радиационного воздействия и степень чувствительности того или иного органа либо ткани. Измерение уровня радиации в зивертах помогает определить, насколько серьёзным будет нанесённый ею урон.
Зиверт — большая единица, поэтому в целях измерения часто применяют милли- и микрозиверты. Кроме основного показателя радиации (её дозы), с помощью зивертов обозначают и скорость, с которой эта доза выделяется в окружающую среду (к примеру, микрозиверты в час или год).
Различают:
- внутреннее воздействие излучения;
- внешнее воздействие излучения.
Внутреннее воздействие происходит при вдыхании радионуклидов либо их поглощении любым путём. Например, они могут попасть в организм через рану или инъекцию. Прекращение внутреннего воздействия радионуклидов происходит при их самопроизвольном выведении из организма или в процессе лечения.
Внешнее радиационное воздействие происходит при попадании радиации из воздуха на кожные покровы или предметы одежды. Радионуклиды могут попасть через пылевые частицы, аэрозоль или любую жидкость.
Кроме того, воздействие может быть:
- запланированным, например, в результате применения медицинского оборудования в лечебных или диагностических целях. Также к запланированному воздействию относят применение излучения в сферах промышленности и науки;
- в результате действия уже существующих источников. Это радон, обнаруживаемый в жилых домах, либо фоновое излучение. В таких случаях необходимо принимать соответствующие контрольные меры.
И, наконец, последний тип воздействия — при чрезвычайной ситуации, возникшей в результате непредвиденного события. Такие ситуации требуют безотлагательных и экстренных мероприятий, так как речь может идти о ядерном ЧП либо намеренном действии злоумышленников.