Онлайн расчет диаметра трубопровода по расходу воды
Содержание:
- Расчет диаметра труб отопления
- Расчет батареи отопления, исходя из объема комнаты
- Метод скоростей
- Порядок расчета сечения магистралей теплоснабжения
- Особенности расчета сечения металлических труб
- Расход воды через трубу при нужном давлении
- Определение характеристик смеси
- Рекомендации по установки дренажных карманов
- Как вычислить пропускную способность
- Вычисления сечения по СНИП 2.04.01-85
Расчет диаметра труб отопления
Чтобы понять, как работать с таблицей диаметров и как выбрать диаметр труб при проведении отопительного трубопровода, рассмотрим типовой расчет для комнаты площадью 20 м2:
- Сначала выясняем, какое количество тепловой мощности требуется для обогрева того или иного помещения в доме. Для каждых 10 м2 площади (при условии, что стены утеплены, а высота потолка – не более 3 м) необходим 1 кВт тепловой мощности.
- В нашем случае – это 20 м2, следовательно, 2 кВт.
- Прибавляем 20 %-ный запас, имеем в итоге 2,4 кВт. Значит, для создания комфортных температурных условий в такой комнате нужно обеспечить отопление мощностью 2,4 кВт. Провести описанные вычисления вы может при помощи онлайн калькулятора.
Таблица диаметров труб отопления, согласно которой можно определить оптимальный диаметр труб в двухтрубном отоплении
- При наличии в помещении окон, приобретаем радиаторы отопления. Количество радиаторов должно быть равно количеству окон. То есть, если окна два, приобретаем две батареи по 1,2 кВт каждая. Размещаем их под подоконниками или в любом другом месте, предусмотренном дизайном.
Увеличивать значение мощности для радиаторов можно, а вот уменьшать – нет
- По таблице внутренних диаметров труб находим значение мощности 2,4 кВт (2400 Вт), затем смотрим верхнее значение теплового потока. В зоне, выделенной голубым цветом, представлена оптимальная скорость движения жидкости в системе отопления, о которой упоминалось в нашей статье ранее. Стоит отметить, что в представленной таблице указаны значения всех параметров для двухтрубной отопительной системы, с учетом разницы температур жидкости на входе в трубопровод и на выходе.
Итак, подытожим работу с таблицей. Для обогрева помещения 20 м2 подходит труба сечением 8 мм. При этом скорость движения теплоносителя составит 0,6 м/с, его расход – 105 кг/ч, а тепловая мощность – 2453 Вт. Допускается применение 10-мм труб, тогда скорость движения будет равна 0,4 м/с, расход 110 кг/ч, а тепловой поток – 2555 Вт.
Расчет батареи отопления, исходя из объема комнаты
Итак, с квадратурой жилого помещения все ясно, но не забывайте, что при равных размерах пола одинаковых, казалось бы, спален в двух разных домах пространство у них может сильно различаться. Все дело в высоте потолка, которая может быть типовой около 2.5 метров, а может достигать и всех 4, что увеличит объем комнаты почти вдвое. Как же в таких случаях правильно рассчитать алюминиевые или стальные радиаторы отопления? Снова обратимся к СНиП.
Согласно нормам, для обогрева 1 кубического метра жилого пространства необходимо 40 Вт излучаемого прибором тепла. Эту величину и возьмем за основу. Зная площадь помещения, вычислить его объем не сложно, достаточно умножить известное значение квадратуры на высоту стен.
Далее нужно узнать общую мощность, требуемую для комфортной температуры в комнате, для чего умножаем объем на показатель, взятый из СНиП. И, наконец, берем паспорт, без которого не должны продаваться батареи обогрева, и с помощью указанных там характеристик выясняем, как рассчитать количество секций, взяв за основу мощность одной. У нас получится формула N = 40SH/P, где H – высота помещения. Также данные можно взять из таблицы:
Мощность одной секции по паспорту, Вт |
Площадь помещения, м2 |
||||||
10 |
12 |
14 |
16 |
18 |
20 |
22 |
|
При высоте потолка 3.5 метра |
|||||||
140 | 10 | 12 | 14 | 16 | 18 | 20 | 22 |
150 | 10 | 12 | 14 | 15 | 17 | 19 | 21 |
160 | 9 | 11 | 13 | 14 | 16 | 18 | 20 |
170 | 9 | 10 | 12 | 14 | 15 | 17 | 19 |
180 | 9 | 10 | 12 | 14 | 15 | 17 | 19 |
190 | 8 | 10 | 11 | 13 | 14 | 16 | 18 |
200 | 8 | 9 | 11 | 12 | 14 | 15 | 17 |
При высоте потолка 4 и 4.5 метра |
|||||||
140 | 12 | 14 | 16 | 19 | 21 | 23 | 26 |
150 | 11 | 13 | 15 | 18 | 20 | 22 | 24 |
160 | 10 | 12 | 14 | 16 | 18 | 20 | 22 |
170 | 10 | 12 | 14 | 16 | 17 | 19 | 21 |
180 | 10 | 12 | 14 | 16 | 17 | 19 | 21 |
190 | 9 | 11 | 13 | 15 | 16 | 18 | 20 |
200 | 9 | 11 | 12 | 14 | 16 | 17 | 19 |
Существует и более точный расчет батарей центрального или замкнутого котельного отопления, для которого нужно учесть многие факторы, такие как тип остекления в комнате, количество наружных стен и другие. Формула выглядит следующим образом: N = 100SK1K2K3K4K5K6K7/P. Здесь
K1 – коэффициент типа остекления:
- Для двустворчатых рам – 1.27
- Для двойных стеклопакетов – 1
- Для тройных стеклопакетов – 0.85
К2 – коэффициент утепления помещения:
- Тонкая термоизоляция – 1.27
- Оптимальная термоизоляция – 1
- Толстая термоизоляция – 0.85
К3 – процент остекления окон от площади пола
- 50 % – 1.2
- 40 % – 1.1
- 30 % – 1
- 20 % – 0.9
- 10 % – 0.8
К4 – самая низкая средняя температура в течение недели в местности постройки дома
- -35 – 1.5
- -25 – 1.3
- -20 – 1.1
- -15 – 0.9
- -10 – 0.7
К5 – количество наружных стен в помещении
- 1 стена – 1.1
- 2 стены – 1.2
- 3 стены – 1.3
- 4 стены – 1.4
К6 – тип помещения над комнатой
- Холодный чердак – 1
- Теплый чердак – 0.9
- Теплое жилое помещение – 0.8
К7 – высота потолков
- 2.5 метра – 1
- 3 метра – 1.05
- 3.5 метра – 1.1
- 4 метра – 1.15
- 4.5 метра – 1.2
Данный расчет позволит, в том числе, разобраться, как правильно рассчитать количество батарей, получившееся число секций нужно просто разделить на несколько радиаторов. Это позволит более эффективно использовать площадь приборов системы обогрева. Однако расчет количества радиаторов отопления требует учета и других факторов, в частности, длины труб, а это значит, что нужно будет выполнять совершенно иные вычисления. Но сделать их следует обязательно, ведь чем полнее расчет отопления частного дома, тем комфортнее будет проживание в нем.
Метод скоростей
Этот способ подходит, если известен объемный (м³/ч) или массовый расход пара (кг/ч). Основная формула для расчета любых трубопроводов:
где:
Q — объемный расход пара, воздуха или воды, м³/ч;
D — диаметр трубопровода, м;
v — допустимая скорость потока, м/с.
На практике расчет всегда ведется по расходу в м³/ч и по диаметру трубопровода в мм. Если известен только массовый расход, то для пересчета кг/ч в м³/ч необходимо учитывать удельный объем по таблице пара.
При этом уделяйте особое внимание подставляемым значениям — объемный расход насыщенного и перегретого пара при пересчете будет разным (при его одинаковом количестве и давлении). Соответственно, и диаметры трубопроводов будут различаться. . После всех преобразований для расчета диаметра трубопровода пара будет справедлива следующая формула:
После всех преобразований для расчета диаметра трубопровода пара будет справедлива следующая формула:
где:
Q – объемный расход пара, м³/ч;
D – искомый диаметр паропровода, мм;
v — рекомендуемая скорость потока, м/с.
В пароконденсатных системах производители парового оборудования рекомендуют поддерживать скорость потока в пределах 25-40 м/с — при ней достигается наибольший эффект сепарирования (осушения) пара. О том же говорит и СНиП II-35-76*, регламентирующий скорость:
-
для насыщенного пара — 30 м/с при диаметре трубопровода до 200 мм и 60 м/с при диаметре свыше 200 мм;
-
для перегретого — 40 м/с и 70 м/с соответственно.
Поэтому при расчете паропровода берем рекомендуемые значения 30 или 40 м/с.
Пример расчета
Предположим, что нужно рассчитать диаметр паропровода для насыщенного пара при 2000 кг/ч, давлении 10 бар и скорости потока 40 м/с.
По таблице удельный объем насыщенного пара при давлении 10 бар составляет v = 0,194 м³/кг. В этом случае Q будет равен 2000х0,194= 388 м³/ч. Подставляем в формулу
Получилось нестандартное значение. При определении диаметра всегда выбирают больший размер, в нашем случае DN 65, чтобы учесть риск возникновения пиковой нагрузки. Также стоит подумать о возможном расширении установки в будущем.
Порядок расчета сечения магистралей теплоснабжения
Перед тем как рассчитать диаметр трубы отопления необходимо определиться с их основными геометрическими параметрами. Для этого нужно знать основные характеристики магистралей. К ним относятся не только эксплуатационные качества, но и размеры.
Каждый производитель указывает значение сечения труб – диаметр. Но фактически он зависит от толщины стенки и материала изготовления. Перед приобретением определенной модели трубопроводов нужно знать следующие особенности обозначения геометрических размеров:
- Расчёт диаметра полипропиленовых труб для отопления делается с учетом того, что производители указывают наружные габаритные размеры. Для вычисления полезного сечения необходимо отнять две толщины стенки;
- Для стальных и медных трубопроводов даются внутренние размеры.
Зная эти особенности можно делать расчет диаметра коллектора отопления, труб и других компонентов для монтажа.
При выборе полимерных труб отопления нужно обязательно уточнить о наличии в конструкции армирующего слоя. Без него при воздействии горячей воды магистраль не будет иметь должной жесткости.
Определение тепловой мощности системы
Как правильно подобрать диаметр труб для отопления и следует ли это делать без расчетных данных? Для небольшой системы отопления можно обойтись без сложных вычислений
Важно лишь знать следующие правила:
- Оптимальный диаметр труб с естественной циркуляцией отопления должен составлять от 30 до 40 мм;
- Для закрытой системы с принудительным движением теплоносителя следует использовать трубы меньшего сечения для создания оптимального давления и скорости потока воды.
Для точного вычисления рекомендуется использовать программа для расчета диаметра труб отопления. Если же их нет – можно воспользоваться приблизительными вычислениями. Сначала необходимо найти тепловую мощность системы. Для этого необходимо воспользоваться следующей формулой:
Где Q – рассчитываемая тепловая мощность отопления, кВт/ч, V – объем комнаты (дома), м³, Δt – разница между температурами на улице и в помещении, °С, К – расчетный коэффициент тепловых потерь дома, 860 – величина для перевода полученных значений в приемлемый формат кВт/ч.
Наибольшие затруднения при предварительном расчете диаметра пластиковых труб для отопления вызывает поправочный коэффициент К. Он зависит от теплоизоляции дома. Его лучше всего взять из данных таблицы.
Степень теплоизоляции здания
Качественное утепление дома, установлены современные окна и двери
В качестве примера расчета диаметров полипропиленовых труб для отопления можно вычислить требуемую тепловую мощность комнаты общим объемом 47 м³. При этом температура на улице будет -23°С, а в помещении — +20°С. Соответственно разница Δt составит 43°С. Поправочный коэффициент возьмем равным 1,1. Тогда требуемая тепловая мощность составит.
Следующий этап выбора диаметра трубы для отопления – определение оптимальной скорости движения теплоносителя.
В представленных расчетах не учитывается поправка на шероховатость внутренней поверхности магистралей.
Скорость воды в трубах
Таблица для расчета диаметра трубы отопления
Оптимальный напор теплоносителя в магистралях необходим для равномерного распределения тепловой энергии по радиаторам и батареям. Для правильного подбора диаметров труб отопления следует принимать оптимальные значения скорости продвижения воды в трубопроводах.
Стоит помнить, что при превышении интенсивности движения теплоносителя в системе могут возникать посторонние шумы. Поэтому данное значение должно быть равно от 0,36 до 0,7 м/с. Если параметр будет меньше – неизбежно возникнут дополнительные тепловые потери. При его превышении появятся построение шумы в трубопроводах и радиаторах.
Для окончательного расчета диаметра трубы отопления следует воспользоваться данными из таблицы, представленной ниже.
Подставляя в формулу расчета диаметра трубы отопления в полученные ранее значения можно определить, что оптимальный диаметр трубы для конкретного помещения составит 12 мм. Это лишь приблизительный расчет. На практике специалисты рекомендуют к полученным значениям прибавить 10-15%. Это объясняется тем, что формула расчета диаметра трубы отопления может измениться из-за добавления новых компонентов в систему. Для точного вычисления потребуется специальная программа для расчета диаметра труб отопления. Подобные программные комплексы можно скачать в демоверсии с ограниченными возможностями расчетов.
Особенности расчета сечения металлических труб
Для больших отопительных систем с трубами из металлов необходимо учитывать потери тепла через стенки. Потери не так и велики, но при большой протяженности могут привести к тому, что на последних радиаторах температура будет совсем низкой из-за неправильного выбора диаметра.
Рассчитаем потери для стальной трубы 40 мм с толщиной стенки 1,4 мм. Потери рассчитываются по формуле:
q = k*3.14*(tв-tп)
где:
q — тепловые потери метра трубы,
k – линейный коэффициент теплопередачи (для данной трубы он составляет 0,272 Вт*м/с);
tв — температура воды в трубе — 80°С;
tп — температура воздуха в помещении — 22°С.
Подставив значения получаем:
q = 0,272*3,15*(80-22)=49 Вт/с
Получается, что на каждом метре теряется почти 50 Вт тепла. Если протяженность значительная, это может стать критическим. Понятно, что чем больше сечение, тем больше будут потери. Если нужно учесть и эти потери, то при расчете потерь к снижению тепловой нагрузки на радиаторе добавляют потери на трубопроводе, а затем, по суммарному значению находят требуемый диаметр.
Определение диаметра труб системы отопления — непростая задача
Но для систем индивидуального отопления эти значения обычно некритичны. Тем более что при расчете теплопотерь и мощности оборудования, чаще всего округление расчетных величин делают в сторону увеличения. Это дает определенный запас, который позволяет не делать столь сложных расчетов.
Важный вопрос: где брать таблицы? Почти на всех сайтах производителей такие таблицы есть. Можно считать прямо с сайта, а можно скачать себе. Но что делать, если нужных таблиц для расчета вы все-таки не нашли. Можете воспользоваться описанной ниже системой подбора диаметров, а можно поступить по-другому.
Несмотря на то, что при маркировке разных труб указываются разные значения (внутренние или наружные), с определенной погрешностью их можно приравнять. По расположенной ниже таблице можно найти тип и маркировку при известном внутреннем диаметре. Тут же можно будет найти соответствующей размер трубы из другого материала. Например, нужен расчет диаметра металлопластиковых труб отопления. Таблицу для МП вы не нашли. Зато есть для полипропилена. Подбираете размеры для ППР, а потом по этой таблице находите аналоги в МП. Погрешность естественно, будет, но для систем с принудительной циркуляцией она допустима.
Таблица соответствия разных типов труб (кликните для увеличения размера)
По этой таблице вы легко определите внутренние диаметры труб системы отопления и их маркировку.
Расход воды через трубу при нужном давлении
Основная задача расчёта объёма потребления воды в трубе по её сечению (диаметру) – это подобрать трубы так, чтобы водорасход не был слишком большой, а напор оставался хороший. При этом необходимо учесть:
- диаметры (ДУ внутреннего сечения),
- потери напора на рассчитываемом участке,
- скорость гидропотока,
- максимальное давление,
- влияние поворотов и затворов в системе,
- материал (характеристики стенок трубопровода) и длину и т.д..
Подбор диаметра трубы по расходу воды с помощью таблицы считается более простым, но менее точным способом, чем измерение и расчёт по давлению, скорости воды и прочим параметрам в трубопроводе, сделанный по месту.
Табличные стандартные данные и средние показатели по основным параметрам
Для определения расчётного максимального расхода воды через трубу приводится таблица для 9 самых распространённых диаметров при различных показателях давления.
Среднее значение давления в большинстве стояках находится в интервале 1,5-2,5 атмосфер. Существующая зависимость от количества этажей (особенно заметная в высотных домах) регулируется путём разделения системы водообеспечения на несколько сегментов. Водонагнетение с помощью насосов влияет и на изменение скорости гидропотока. Кроме того, при обращении к таблицам в расчёте водопотребления учитывают не только число кранов, но и количество водонагревателей, ванн и др. источников.
Изменение характеристик проходимости крана с помощью регуляторов водорасхода, экономителей, аналогичных WaterSave ( http://water-save.com/ ), в таблицах не фиксируются и при расчёте расхода воды на (по) трубе, как правило, не учитываются.
Способы вычисления зависимостей водорасхода и диаметра трубопровода
С помощью нижеприведённых формул можно как рассчитать расход воды в трубе, так и, определить зависимость диаметра трубы от расхода воды.
В данной формуле водорасхода:
- под q принимается расход в л/с,
- V – определяет скорость гидропотока в м/с,
- d – внутреннее сечение (диаметр в см).
Зная водорасход и d сечения, можно, применив обратные вычисления, установить скорость, или, зная расход и скорость – определить диаметр. В случае наличия дополнительного нагнетателя (например, в высотных зданиях), создаваемое им давление и скорость гидропотока указываются в паспорте прибора. Без дополнительного нагнетания скорость потока чаще всего варьируется в интервале 0,8-1,5 м/сек.
Для более точных вычислений принимают во внимание потери напора, используя формулу Дарси:
Для вычисления необходимо дополнительно установить:
- длину трубопровода (L),
- коэффициент потерь, который зависит от шероховатостей стенок трубопровода, турбулентности, кривизны и участков с запорной арматурой (λ),
- вязкость жидкости (ρ).
Зависимость между значением D трубопровода, скоростью гидропотока (V) и водорасходом (q) с учётом угла уклона (i) можно выразить в таблице, где две известные величины соединяются прямой линией, а значение искомой величины будет видно на пересечении шкалы и прямой.
Для технического обоснования также строят графики зависимости эксплуатационных и капитальных затрат с определением оптимального значения D, которое устанавливается в точке пересечения кривых эксплуатационных и капитальных затрат.
Расчёт расхода воды через трубу с учётом падения давления можно проводить с помощью онлайн-калькуляторов (например: http://allcalc.ru/node/498; https://www.calc.ru/gidravlicheskiy-raschet-truboprovoda.html). Для гидравлического расчёта, как и в формуле, нужно учесть коэффициент потерь, что предполагает выбор:
способа расчёта сопротивления,
материала и вида трубопроводных систем (сталь, чугун, асбоценмент, железобетон, пластмасса), где принимается во внимание, что, например, пластиковые поверхности менее шероховатые, чем стальные, и не подвергаются коррозии,
внутреннего диаметры,
длины участка,
падения напора на каждый метр трубопровода.
В некоторых калькуляторах учитываются дополнительные характеристики трубопроводных систем, например:
- новые или не новые с битумным покрытием или без внутреннего защитного покрытия,
- с внешним пластиковым или полимерцементным покрытием,
- с внешним цементно-песчаным покрытием, нанесённым разными методами и др.
Определение характеристик смеси
Поскольку в условии
задачи не оговаривается изменение
температуры, принимаем поток изотермическим,
т.е. с сохранением температуры 30°С на
всем протяжении. Состав смеси бензола
и толуола позволяет определить плотность
и вязкость смеси.
Плотность при 30 С:
бензола ρб
= 868,5 кг/м3
и плотность толуола ρт
= 856,5 кг/м3,
тогда плотность смеси: ρсм
= 0,7* ρб
+ 0,3* ρт
= 0,7*868,5 + 0,3*856,5 = 864,9 кг/м3
.
Вязкость при 30 С:
бензола μб
= 5,6*10-4
Па*с и вязкость толуола μт
= 5,22*10-4
Па*с, тогда вязкость смеси: lg
μсм
= 0,7*lg
μб
+ 0,3*lg
μт
= 0,7*lg
(5,6*10-4)
+ 0,3*lg
(5,22*10-4)
= — 3,261, а μсм
= 5,48*10-4
Па*с .
Рекомендации по установки дренажных карманов
Пусковые нагрузки на паропровод очень высоки, так как горячий пар поступает в холодный не прогретый трубопровод и пар начинает активно конденсировать. Согласно СНиП 2.04.07-86* Пункт 7.26 требуется производить дренажные карманы на прямых участках паропроводов через каждые 400—500 м и через каждые 200—300 м при встречном уклоне должен предусматриваться дренаж паропроводов.
Разные производители трубопроводной арматуры дают свои рекомендации по поводу интервала установки конденсатоотводчиков. Российский производитель завод АДЛ,опираясь на свой многолетний опыт, рекомендует производить дренажные карманы с установкой конденсатоотводчиков Стимакс через каждые 30-50м при протяженных линиях трубопровода. При небольших по протяженности линиях рекомендации АДЛ не отличаются от СНиП 2.04.07-86.
Почему конденсат нужно удалять из паропровода?
При подаче пар развивает очень большую скорости и гонит образующую в нижней части трубы плёнку конденсата по паропроводу со скоростью 60м/с и выше, образуя волны конденсата гребнеобразные , которые могут перекрыть всё сечение трубы. Пар гонит весь этот конденсат, врезаясь во все преграды на своём пути: фитинги, фильтры, регулирующие клапаны, вентиля. Разумеется, для самого трубопровода не говоря уже об оборудование, это будет сильный гидроудар.
Каков же будет вывод?
- Как можно чаще осуществлять дренажные карманы с установкой конденсатоотводчиков.
- Установка фильтров в горизонтальной плоскости, сливной крышкой вниз для избегания конденсатного кармана
- Правильно производить концентрические сужения, избегая конденсатных карманов
- Соблюдать уклон для самотечного слива конденсата в дренажные карманы
- Установка вентилей вместо шаровых кранов
- Задвижки с обрезиненным клином серии KR 11|12|15|20
- Фильтр сетчатый серия IS17
- Насосные станции «Гранфлоу» серия УНВ DPV
- Обратный клапан серия RD30
- Фильтры сетчатые серии IS 15|16|40|17
- Перепускной клапан «Гранрег» КАТ32
- Циркуляционный насос «Гранпамп» серии R
- Обратные клапаны «Гранлок» CVS25
- Стальные шаровые краны БИВАЛ
- Фильтр сетчатый серия IS30
- Оборудование для пара
- Циркуляционные насосы «Гранпамп» сери IPD
- Регулятор давления «Гранрег» КАТ41
- Клапаны предохранительные Прегран КПП 096|095|097|496|095|495
- Перепускной клапан «Гранрег» КАТ82
- Стальные шаровые краны БИВАЛ КШТ с редутором
- Регуляторы давления «Гранрег» КАТ
- Насосные станции «Гранфлоу» серия УНВ на насосах MHC и ЗМ
- Задвижка Гранар серия KR15 с пожарным сертификатом
- Обратный клапан CVS16
- Перепускной клапан «Гранрег» КАТ871
- Насосные станции дозирующие — ДОЗОФЛОУ
- Обратный клапан CVS40
- Задвижка «Гранар» серия KR17 аттестация по форме FM Global
- Гранлок CVT16
- Циркуляционные насосы «Гранпамп» сери IP
- Регулятор давления «после себя «Гранрег» КАТ160|КАТ80| КАТ30| КАТ41
- Моноблочные насосы из нержавеющей стали серии МНС 50|65|80|100
- Задвижка «Гранар» серия KR16 аттестация по форме FM Global
- Обратный клапан серия RD50
- Конденсатоотводчики Стимакс А11|A31|HB11|AC11
- Обратный клапан серия RD18
- Стальные шаровые краны Бивал КШГ
- Дисковые поворотные затворы Гранвэл ЗПВС|ЗПВЛ|ЗПТС|ЗПСС
- Аварийные насосные станции
- ← Экономия воды
- Влияние воздуха и газов на теплопередачу →
Источник
Как вычислить пропускную способность
Табличный способ – самый простой. Таблиц подсчета разработано несколько: можно выбрать ту, которая подойдет в зависимости от известных параметров.
Вычисление на основе сечения трубы
В СНиП 2.04.01-85 предлагается узнать количество потребления воды по обхвату трубы.
Внешнее сечение магистрали (мм) | Приблизительное количество жидкости | |
В литрах в минуту | В кубометрах в час | |
20 | 15 | 0,9 |
25 | 30 | 1,8 |
32 | 50 | 3 |
40 | 80 | 4,8 |
50 | 120 | 7,2 |
63 | 190 | 11,4 |
Расчет по температуре теплоносителя
С ростом температуры уменьшается проходимость трубы – вода расширяется и тем самым создает дополнительное трение.
Вычислить нужные данные можно по специальной таблице:
Трубное сечение (мм) | Пропускная способность | |||
По теплоте (гкл/ч) | По теплоносителю (т/ч) | |||
Вода | Пар | Вода | Пар | |
15 | 0,011 | 0,005 | 0,182 | 0,009 |
25 | 0,039 | 0,018 | 0,650 | 0,033 |
38 | 0,11 | 0,05 | 1,82 | 0,091 |
50 | 0,24 | 0,11 | 4,00 | 0,20 |
75 | 0,72 | 0,33 | 12,0 | 0,60 |
100 | 1,51 | 0,69 | 25,0 | 1,25 |
125 | 2,70 | 1,24 | 45,0 | 2,25 |
150 | 4,36 | 2,00 | 72,8 | 3,64 |
200 | 9,23 | 4,24 | 154 | 7,70 |
250 | 16,6 | 7,60 | 276 | 13,8 |
300 | 26,6 | 12,2 | 444 | 22,2 |
350 | 40,3 | 18,5 | 672 | 33,6 |
400 | 56,5 | 26,0 | 940 | 47,0 |
450 | 68,3 | 36,0 | 1310 | 65,5 |
500 | 103 | 47,4 | 1730 | 86,5 |
600 | 167 | 76,5 | 2780 | 139 |
700 | 250 | 115 | 4160 | 208 |
800 | 354 | 162 | 5900 | 295 |
900 | 633 | 291 | 10500 | 525 |
1000 | 1020 | 470 | 17100 | 855 |
Поиск данных в зависимости от давления
Давление потока воды общей магистрали учитывается при подборе труб
При подборе труб для установки любой коммуникационной сети нужно учесть давление потока в общей магистрали. Если предусмотрен напор под высоким давлением, надо устанавливать трубы с большим сечением, чем при движении самотеком. Если при подборе трубных отрезков не учтены эти параметры, а по малым сетям пропускают большой водный поток, они станут издавать шум, вибрировать и быстро придут в негодность.
Чтобы найти наибольший расчетный водный расход, используется таблица пропускной способности труб в зависимости от диаметра и разных показателей давления воды:
Расход | Пропускная способность | |||||||||
Сечение трубы | 15 мм | 20 мм | 25 мм | 32 мм | 40 мм | 50 мм | 65 мм | 80 мм | 100 мм | |
Па/м | Мбар/м | Меньше 0,15 м/с | 0,15 м/с | 0,3 м/с | ||||||
90,0 | 0,900 | 173 | 403 | 745 | 1627 | 2488 | 4716 | 9612 | 14940 | 30240 |
92,5 | 0,925 | 176 | 407 | 756 | 1652 | 2524 | 4788 | 9756 | 15156 | 30672 |
95,0 | 0,950 | 176 | 414 | 767 | 1678 | 2560 | 4860 | 9900 | 15372 | 31104 |
97,5 | 0,975 | 180 | 421 | 778 | 1699 | 2596 | 4932 | 10044 | 15552 | 31500 |
100,0 | 1000,0 | 184 | 425 | 788 | 1724 | 2632 | 5004 | 10152 | 15768 | 31932 |
120,0 | 1200,0 | 202 | 472 | 871 | 1897 | 2898 | 5508 | 11196 | 17352 | 35100 |
140,0 | 1400,0 | 220 | 511 | 943 | 2059 | 3143 | 5976 | 12132 | 18792 | 38160 |
160,0 | 1600,0 | 234 | 547 | 1015 | 2210 | 3373 | 6408 | 12996 | 20160 | 40680 |
180,0 | 1800,0 | 252 | 583 | 1080 | 2354 | 3589 | 6804 | 13824 | 21420 | 43200 |
200,0 | 2000,0 | 266 | 619 | 1151 | 2488 | 3780 | 7200 | 14580 | 22644 | 45720 |
220,0 | 2200,0 | 281 | 652 | 1202 | 2617 | 3996 | 7560 | 15336 | 23760 | 47880 |
240,0 | 2400,0 | 288 | 680 | 1256 | 2740 | 4176 | 7920 | 16056 | 24876 | 50400 |
260,0 | 2600,0 | 306 | 713 | 1310 | 2855 | 4356 | 8244 | 16740 | 25920 | 52200 |
280,0 | 2800,0 | 317 | 742 | 1364 | 2970 | 4356 | 8568 | 17338 | 26928 | 54360 |
300,0 | 3000, | 331 | 767 | 1415 | 3078 | 4680 | 8892 | 18000 | 27900 | 56160 |
Так же, рассчитывая расход воды через трубу по таблице значений диаметра трубы и давления, учитывается не только количество кранов, но и численность водонагревателей, ванн и иных потребителей.
Гидравлический расчет по Шевелеву
Для наиболее верного выявления показателей всей водоснабжающей сети используют особые справочные материалы. В них определены ходовые характеристики для труб из разных материалов.
В виде примера хорошего образца для расчетов можно назвать таблицу Шевелева. Это объемный справочник. Чтобы им воспользоваться, не обязательно идти в библиотеку. Все нужные данные можно найти во Всемирной сети. Кроме того, есть электронные программы на основе таблиц Шевелева. Достаточно ввести требуемые параметры, чтобы получить готовый результат.
Применение формул
Применение разных формул зависит от известных данных. Самая простая из них: q = π×d²/4 ×V. В формуле: q показывает расход воды в литрах, d – сечение трубы в см, V – скоростной показатель продвижения гидропотока в м/сек.
Скоростные параметры можно взять из таблицы:
Тип водоподведения | Скорость (м/сек) |
Городской водопровод | 0,60–1,50 |
Магистральный трубопровод | 1,50–3,00 |
Центральная сеть отопления | 2,00–3,00 |
Напорная система | 0,75–1,50 |
Знать, какими характеристиками обладают трубы, нужно для грамотного подключения сантехнических приборов. При правильном подборе данных не будет повода беспокоиться, что при открытии крана в ванной комнате вода на кухне перестанет идти либо снизится ее напор.
Вычисления сечения по СНИП 2.04.01-85
Прежде всего, необходимо понимать, что расчет диаметра водопропускной трубы является сложным инженерным процессом. Для этого потребуются специальные знания. Но, выполняя бытовую постройку водопропускной магистрали, часто гидравлический расчет по сечению проводят самостоятельно.
Данный вид конструкторского вычисления скорости потока для водопропускной конструкции можно провести двумя способами. Первый – табличные данные. Но, обращаясь к таблицам необходимо знать не только точное количество кранов, но и емкостей для набора воды (ванны, раковины) и прочего.
Только при наличии этих сведений о водопропускной системе, можно воспользоваться таблицами, которые предоставляет СНИП 2.04.01-85. По ним и определяют объем воды по обхвату трубы. Вот одна из таких таблиц:
Внешний объем трубного сортамента (мм) Примерное количество воды, которое получают в литрах за минуту Примерное количество воды, исчисляемое в м3 за час
20 15 0,9
25 30 1,8
32 50 3
40 80 4,8
50 120 7,2
63 190 11,4
Однозначно, эти данные по объему, показывающие потребление, интересны, как информация, но специалисту по трубопроводу понадобятся определение совершенно других данных – это объем (в мм) и внутреннее давление в магистрали. В таблице это можно найти не всегда. И более точно узнать эти сведениям помогают формулы.
Уже понятно, что размеры сечения системы влияют на гидравлический расчет потребления. Для домашних расчетов применяется формула расхода воды, которая помогает получить результат, имея данные давления и диаметра трубного изделия. Вот эта формула:
Формула для вычисления по давлению и диаметру трубы: q = π×d²/4 ×V
Если сеть водоснабжения питается от водонапорной башни, без дополнительного влияния нагнетающего насоса, то скорость передвижения потока составляет приблизительно 0,7 – 1,9 м/с. Если подключают любое нагнетающее устройство, то в паспорте к нему имеется информация о коэффициенте создаваемого напора и скорости перемещения потока воды.
Данная формула не единственная. Есть еще и многие другие. Их без труда можно найти в сети интернета.
В дополнение к представленной формуле нужно заметить, что огромное значение на функциональность системы оказывают внутренние стенки трубных изделий. Так, например, пластиковые изделия отличаются гладкой поверхностью, нежели аналоги из стали.
По этим причинам, коэффициент сопротивления у пластика существенно меньше. Плюс ко всему, эти материалы не подвергаются влиянию коррозийных образований, что также оказывает положительное действие на пропускные возможности сети водоснабжения.
Определение потери напора
Расчет прохода воды производят не только по диаметру трубы, он вычисляется по падению давления. Вычислить потери можно посредством специальных формул. Какие формулы использовать, каждый будет решать самостоятельно. Чтобы рассчитать нужные величины, можно использовать различные варианты. Единственного универсального решения этого вопроса нет.
Но прежде всего, необходимо помнить, что внутренний просвет прохода пластиковой и металлопластиковой конструкции не поменяется через двадцать лет службы. А внутренний просвет прохода металлической конструкции со временем станет меньше.
А это повлечет за собою потери некоторых параметров. Соответственно, скорость воды в трубе в таких конструкциях является разной, ведь по диаметру новая и старая сеть в некоторых ситуациях будут заметно отличаться. Так же будет отличаться и величина сопротивления в магистрали.
Так же перед тем, как рассчитать необходимые параметры прохода жидкости, нужно принять к сведению, что потери скорости потока водопровода связанны с количеством поворотов, фитингов, переходов объема, с наличием запорной арматуры и силой трения. Причем, все это при вычисления скорости потока должны проводиться после тщательной подготовки и измерений.
Расчет расхода воды простыми методами провести нелегко. Но, при малейших затруднениях всегда можно обратиться за помощью к специалистам или воспользоваться онлайн калькулятором. Тогда можно рассчитывать на то, что проложенная сеть водопровода или отопления будет работать с максимальной эффективностью.