Как рассчитать теплопотери загородного дома

Тепловентилятор

Самый простой и доступный обогревательный прибор. Используется для быстрого прогрева небольших помещений. У тепловентиляторов мощность 2,0-2,5 кВт. По сравнению с масляным радиатором и конвектором имеют небольшие габариты. Тепловентиляторы располагаться на полу, на столе, бывают модели с креплением к стене

Принцип работы В тепловентиляторе воздух нагревается от раскаленной электрической спирали и вентилятором подается в зону обогрева. Температура открытой электрической спирали около 80°С, а воздуха на выходе из тепловентилятора всегда до 20°С. Для улучшения равномерности обогрева помещения вентилятор поворачивается в корпусе. Материал корпуса тепловентилятора, как правило, пластмасса
Достоинства Очень быстро нагревают воздух и распределяют по объёму помещения. Отключаются в случае падения. Защищены от перегрева. Благодаря термостату регулируют установленную температуру и не требуют отключения. Компактны и эстетичны
Недостатки Издаваемый шум во время работы на повышенных оборотах. Загрязнение воздуха вследствие сжигания кислорода и частичек пыли. Забившаяся пыль, сгорая на раскалённой спирали, может быть источником неприятного запаха в помещении
Выводы Тепловентиляторы обеспечивают самую высокую скорость обогрева помещения, но создают повышенный шум на высоких оборотах, а модели с открытой спиралью имеют и другой недостаток: они сжигают кислород и загрязняют воздух продуктами сгорания

Коэффициенты расчета тепловых потерь здания

Важно не только знать необходимую формулу, требующуюся для расчета необходимой энергии тепла для обогрева постройки, но и применять следующие коэффициенты, которые позволяют учитывать абсолютно все факторы, влияющие на такие вычисления:

  • К1 – это тип окон, которыми оборудовано конкретное помещение;
  • К2 – это показатели тепловой изоляции стен конструкции;
  • К3 – показатель соотношения площади оконных проемов и полов;
  • К4 – наименьшая температура снаружи дома;
  • К5 – количество внешних стен, имеющихся в сооружении;
  • К6 – количество этажей в постройке;
  • К7 – параметр высоты помещения.

Если говорить о потерях тепла, осуществляемых через окна, важно помнить о коэффициентах для таких расчетов, которые являются:

  • для окон со стандартным остеклением этот параметр составляет 1,27;
  • для стеклопакетов двухкамерного типа – 1;
  • для трехкамерных стеклопакетов – 0,85.

Так, соотношение оконных площадей и пола в жилище будет:

  • для 10% – 0,8;
  • для 10 – 19% – 0,9;
  • для 20% – 1;
  • для 21 – 29% – 1,1;
  • для 30% – 1,2;
  • для 31 – 39% – 1,3;
  • для 40% – 1,4;
  • для 50% – 1,5.

Выполняя расчет потребления необходимого количества энергии тепла, также важно помнить, что для материала, из которого изготовлены стены сооружения, также имеются свои коэффициенты:

  • для блоков или бетонных панелей – от 1,25 до 1,5;
  • для бревенчатых стен или стен из бруса – 1,25;
  • для кирпичной кладки толщиной в 1,5 кирпича – 1,5;
  • для 2,5 кирпичной кладки – 1,1;
  • для блоков из пенобетона – 1.

Стоит учитывать и тот факт, что если температуры за пределами дома являются низкими, то и тепловые потери становятся более существенными, например:

  • если температура достигает -10°C, то коэффициент будет составлять 0,7;
  • если этот параметр является ниже -10°C, то коэффициент должен быть 0,8;
  • если температура составляет -15°C, то цифра будет равна 0,9;
  • при морозе в -20°C коэффициент должен составлять 1;
  • величина коэффициента при -25°C – 1,2;
  • в случае понижения температуры до -30°C коэффициент должен быть равен 1,2;
  • если столбик термометра на улице достигает -35°C, то коэффициент должен составлять 1,3.

Преимущества и недостатки радиаторов из чугуна

Радиаторы чугунные изготавливаются при помощи литья. Чугунный сплав отличается однородным составом. Такие отопительные приборы широко используются как для центральных отопительных систем, так и для систем автономного отопления. Размеры чугунных радиаторов могут быть разными.

Среди преимуществ чугунных радиаторов можно отметить:

  1. возможность использования для теплоносителя любого качества. Подходят даже для теплоносителя с высоким содержанием щелочей. Чугун – материал прочный и растворить либо поцарапать его непросто;
  2. устойчивость к коррозионным процессам. Такие радиаторы могут выдержать температуру теплоносителя до +150 градусов;
  3. отличные теплоаккумулирующие свойства. Спустя час после отключения отопления чугунный радиатор будет излучать 30% тепла. Поэтому чугунные радиаторы идеально подходят для систем с нерегулярным нагревом теплоносителя;
  4. не требуют частого ухода. А связано это преимущественно с тем, что сечение у радиаторов из чугуна достаточно большое;
  5. длительный срок эксплуатации – порядка 50 лет. Если теплоноситель высокого качества, то радиатор может прослужить и столетие;
  6. надежность и прочность. Толщина стенок таких батарей большая;
  7. высокое излучение тепла. Для сравнения: биметаллические обогреватели передают 50% тепла, а радиаторы из чугуна – 70% тепла;
  8. на чугунные радиаторы цена вполне приемлема.

Среди недостатков можно выделить:

  • большой вес. Только одна секция может иметь вес около 7 кг;
  • монтаж следует производить на предварительно подготовленную, надежную стену;
  • радиаторы надо покрывать краской. Если через время необходимо покрасить батарею вновь, старый слой краски в обязательном порядке шкурят. В противном случае теплоотдача снизится;
  • повышенный расход топлива. Один сегмент батареи из чугуна содержит раза в 2-3 больше жидкости, нежели другие виды батарей.

Как рассчитываются Гкал на горячую воды и отопление

Отопление рассчитывается по формулам, аналогичным формулам нахождения величины Гкал/ч.

Примерная формула подсчёта оплаты за тёплую воду в жилых помещениях:

P i гв = V i гв * T х гв + (V v кр * V i гв / ∑ V i гв * T v кр)

Используемые величины:

  • P i гв – искомая величина;
  • V i гв – объём потребления горячей воды за определённый временной промежуток;
  • T х гв – установленная тарифная плата за горячее водоснабжение;
  • V v гв – объём затраченной энергии компанией, которая занимается её подогревом и поставкой в жилое/нежилое помещение;
  • ∑ V i гв – сумма потребления тёплой воды во всех помещениях дома, в котором производится расчет;
  • T v гв – тарифная плата за тепловую энергию.

В данной формуле не учитывается показатель атмосферного давления, поскольку он не существенно влияет на конечную искомую величину.

Формула приблизительная и не подходит для самостоятельного расчёта без предварительной консультации. Перед её использованием необходимо обратиться к местным коммунальным службам для уточнения и корректировки – возможно, они пользуются другими параметрами и формулами для расчёта.

Расчёт размера платы за отопление является очень важным, так как зачастую внушительные суммы не оправданы

Результат расчётов зависит не только от относительных температурных величин – на него напрямую влияют установленные правительством тарифы на потребление горячего водоснабжения и отопления помещений.

Вычислительный процесс значительно упрощается, если установить отопительный счётчик на квартиру, подъезд или жилой дом.

Стоит учитывать, что даже самые точные счётчики могут допускать погрешность при вычислениях. Также её можно определить по формуле:

E = 100 *((V1 – V2)/(V1 + V2))

В представленной формуле используются следующие показатели:

  • E – погрешность;
  • V1 – объём потребляемого горячего водоснабжения при поступлении;
  • V2 – потребляемая горячая вода на выходе;
  • 100 – вспомогательный коэффициент, преобразующий результат в проценты.

В соответствии с требованиями, средняя величина погрешности расчётного прибора составляет около 1 %, а максимально допустимая – 2 %.

Антифризы параметры и виды теплоносителей

Основой для производства антифриза служит этиленгликоль или пропиленгликоль. В чистом виде эти вещества представляют собой весьма агрессивные среды, но дополнительные присадки делают антифриз пригодным для использования в системах отопления. От введенных присадок зависит степень антикоррозийности, срок работы и, соответственно, конечная стоимость.

Главной же задачей присадок является защита от коррозии. Имея низкую теплопроводность, слой ржавчины становится изолятором тепла. Ее частицы способствуют засорению каналов, выводят из строя циркуляционные насосы, приводят к протечкам и повреждениям в отопительной системе.

Более того, сужение внутреннего диаметра трубопровода влечет за собой гидродинамическое сопротивление, из-за чего скорость теплоносителя снижается, увеличиваются энергозатраты.

Антифриз имеет широкий диапазон температур (от -70°С до +110°С), но, изменяя пропорции воды и концентрата, можно получить жидкость с другой температурой замерзания. Это позволяет использовать прерывистый режим отопления и включать обогрев помещений только при необходимости. Как правило, антифриз предлагается двух типов: с температурой замерзания не больше -30°С и не больше -65°С.

В промышленных системах охлаждения и кондиционирования, а также в технических системах с отсутствием особых экологических требований используется антифриз на основе этиленгликоля с антикоррозийными присадками. Связано это с токсичностью растворов. Для их применения требуются расширительные баки закрытого типа, не допускается использование в двухконтурных котлах.

Иные возможности применения получил раствор на основе пропиленгликоля. Это экологически чистый и безопасный состав, который применяют в пищевой, парфюмерной промышленности и жилых зданиях. Везде, где требуется не допустить возможности попадания в почву и грунтовые воды токсичных веществ.

Следующий тип — триэтиленгликолевый, который применяют при высоких температурных режимах (до 180°С), но его параметры не дали широкого применения.

Пример расчета тепловой мощности

Возьмем некое помещение 80 м2 с высотой потолков 2,5 м и посчитаем, какой мощности котел нам потребуется для его отопления.

Вначале высчитываем кубатуру: 80 х 2,5 = 200 м3. Дом у нас утеплен, но недостаточно – коэффициент рассеивания 1,2.

Морозы бывают до -40 °C, а в помещении хочется иметь комфортные +22 градуса, разница температур (дельта «Т») получается 62 °C.

Подставляем в формулу мощности тепловых потерь цифры и перемножаем:

200 х 62 х 1,2 = 14880 ккал/ч.

Полученные килокалории переводим в киловатты, пользуясь конвертером:

  • 1 кВт = 860 ккал;
  • 14880 ккал = 17302,3 Вт.

Округляем в большую сторону с запасом, и понимаем, что в самый сильный мороз -40 градусов нам потребуется 18 кВт энергии в час.

Можем посчитать теплопотери в Вт на каждый м2 стен и потолка. Высота потолков известна 2,5 м. Дом 80 м2 – это может быть 8 х 10 м.

Умножаем периметр дома на высоту стен:

(8 + 10) х 2 х 2,5 = 90 м2 поверхности стены + 80 м2 потолок = 170 м2 поверхности, контактирующей с холодом. Теплопотери, высчитанные нами выше, составили 18 кВт/ч, делим поверхность дома на расчетную израсходованную энергию получаем, что 1 м2 теряет примерно 0,1 кВт или 100 Вт ежечасно при температуре на улице -40 °C, а в помещении +22 °С.

Эти данные могут стать основой для расчёта требуемой толщины утеплителя на стены.

Приведем другой пример расчета, он в некоторых моментах сложнее, но более точный.

Формула:

Q = S x (дельта)T / R:

  • Q– искомая величина теплопотерь дома в Вт;
  • S– площадь охлаждающих поверхностей в м2;
  • T– разница температур в градусах Цельсия;
  • R– тепловое сопротивление материала (м2 х К/Вт) (Метры квадратные умноженные на Кельвин и делёный на Ватт).

Итак, чтобы найти «Q» того же дома, что и в примере выше, подсчитаем площадь его поверхностей «S» (пол и окна считать не будем).

  • «S» в нашем случае = 170 м2, из них 80 м2 потолок и 90 м2 – стены;
  • T = 62 °С;
  • R– тепловое сопротивление.

Ищем «R» по таблице тепловых сопротивлений или по формуле. Формула для расчета по коэффициенту теплопроводности такая:

R= H/ К.Т. (Н – толщина материала в метрах, К.Т. – коэффициент теплопроводности).

В этом случае, дом у нас имеет стены в два кирпича обшитые пенопластом толщиной 10 см. Потолок засыпан опилками толщиной 30 см.

Из таблицы коэффициентов теплопроводности (измеряется Вт / (м2 х К) Ватт делёный на произведение метра квадратного на Кельвин). Находим значения для каждого материала, они будут:

  • кирпич – 0,67;
  • пенопласт – 0,037;
  • опилки – 0,065.
  • R (потолка 30 см толщиной) = 0,3 / 0,065 = 4,6 (м2 х К) / Вт;
  • R (кирпичной стены 50 см) = 0,5 / 0,67 = 0,7 (м2 х К) / Вт;
  • R (пенопласт 10 см) = 0,1 / 0,037 = 2,7 (м2 х К) / Вт;
  • R (стен) = R(кирпич) + R(пенопласт) = 0,7 + 2,7 = 3,4 (м2 х К) / Вт.

Теперь можем приступить к расчету теплопотерь «Q»:

  • Q для потолка = 80 х 62 / 4,6 = 1078,2 Вт.
  • Q стен = 90 х 62 / 3,4 = 1641,1 Вт.
  • Остается сложить 1078,2 + 1641,1 и перевести в кВт, получается (если сразу округлить) 2,7 кВт энергии за 1 час.

Можно обратить внимание, насколько большая разница получилась в первом и втором случае, хотя объём домов и температура за окном в первом и втором случае были совершенно одинаковыми.

Всё дело в степени утомлённости домов (хотя, конечно, данные могли быть и иными, если бы мы рассчитывали пол и окна).

Технические характеристики радиаторов из чугуна

Технические параметры чугунных батарей связаны с их надежностью и выносливостью. Основные характеристики радиатора из чугуна, как и любого отопительного устройства, — это теплоотдача и мощность. Как правило, мощность радиаторов отопления чугунных производители указывают для одной секции. Количество секций может быть разной. Как правило, от 3 до 6. Но иногда может достигать и 12. Нужное количество секций рассчитывается отдельно для каждой квартиры.

Зависит количество секций от ряда факторов:

  1. площадь помещения;
  2. высота помещения;
  3. количество окон;
  4. этаж;
  5. наличие установленных стеклопакетов;
  6. угловое размещение квартиры.

Приводится на радиаторы чугунные отопления цена за секцию, и может варьироваться зависимо от производителя. Теплоотдача батарей зависит от того, из какого именно материала они сделаны. В этом плане чугун уступает алюминию и стали.

Среди прочих технических параметров можно выделить:

  • максимальное рабочее давление – 9-12 бар;
  • максимальная температура теплоносителя – 150 градусов;
  • в одной секции помещается около 1,4 литра воды;
  • вес одной секции составляет примерно 6 кг;
  • ширина секции 9,8 см.

Устанавливать такие батареи следует с расстоянием между радиатором и стеной от 2 до 5 см. Высота установки над полом должна быть не меньше 10 см. Если окон в комнате несколько, устанавливать батареи нужно под каждым окном. Если квартира угловая, то рекомендуется провести наружное утепление стен либо увеличить количество секций.

Следует отметить, что часто продаются чугунные батареи неокрашенными. В связи с этим их после покупки необходимо покрыть термостойким декоративным составом, предварительно обязательно протянуть.

Среди отечественных радиаторов можно выделить модель мс 140. На радиаторы отопления чугунные мс 140 технические характеристики приведены ниже:

    1. теплоотдача секции МС 140 – 175 Вт;
    2. высота – 59 см;
    3. весит радиатор 7 кг;
    4. емкость одной секции — 1,4 л;
    5. глубина секции составляет 14 см;
    6. мощность секции достигает 160 Вт;
    7. ширина секции составляет 9,3 см;

  • максимальная температура теплоносителя составляет 130 градусов;
  • максимальное рабочее давление – 9 бар;
  • радиатор имеет секционную конструкцию;
  • опрессовочное давление составляет 15 бар;
  • объем воды в одной секции составляет 1,35 л.;
  • в качестве материала для межсекционных прокладок используется термостойкая резина.

Стоит отметить, что чугунные радиаторы мс 140 отличаются надежностью и долговечностью. Да и цена вполне доступная. Что и обуславливает их востребованность на отечественном рынке.

Особенности выбора чугунных радиаторов

Чтобы выбрать чугунные радиаторы отопления какие лучше всего подойдут для ваших условий, надо учитывать такие технические параметры:

  • теплоотдача. Выбирают исходя из размеров помещения;
  • вес радиатора;
  • мощность;
  • размеры: ширина, высота, глубина.

Для расчета тепловой мощности чугунной батареи надо ориентироваться на такое правило: для комнаты с 1 наружной стеной и 1 окном нужен 1 кВт мощности на 10 кв.м. площади помещения; на комнату с 2 наружными стенами и 1 окном – 1,2 кВт.; для обогрева комнаты с 2 наружными стенами и 2 окнами — 1,3 кВт.

Если вы решили чугунные радиаторы отопления купить, следует учитывать и такие нюансы:

  1. если потолок выше 3 м, требуемая мощность увеличится пропорционально;
  2. если в помещении имеются окна со стеклопакетами, то мощность батареи можно снизить на 15%;
  3. если окон в квартире несколько, то под каждым из них нужно устанавливать радиатор.

Современный рынок

У импортных батарей поверхность идеально гладкая, они более качественные и выглядят эстетичнее. Правда, стоимость их высокая.

Среди отечественных аналогов можно выделить чугунные радиаторы konner, которые пользуются сегодня хорошим спросом. Они отличаются долгим сроком службы, надежностью, прекрасно вписываются в современный интерьер. Выпускаются чугунные радиаторы konner отопления в любой комплектации.

  • Как залить воду в открытую и закрытую систему отопления?
  • Популярный напольный газовый котел российского производства
  • Как грамотно спустить воздух из радиатора отопления?
  • Расширительный бачок для отопления закрытого типа: устройство и принцип действия
  • Газовый двухконтурный настенный котёл Навьен: коды ошибок при неисправности

Рекомендуем к прочтению

2016–2017 — Ведущий портал по отоплению. Все права защищены и охраняются законом

Копирование материалов сайта запрещено. Любое нарушение авторских прав влечет за собой юридическую ответственность. Контакты

Масляный радиатор

Один из наиболее популярных бытовых обогревателей. Они имеют мощность от 1,0 до 2,5 кВт и используются в квартирах, офисах, на дачах.

Принцип работы Внутри герметичного металлического корпуса, наполненного минеральным маслом, находится электрическая спираль. Нагреваясь, она передает свое тепло маслу, а оно в свою очередь — металлическому корпусу, а затем воздуху. Его внешняя поверхность состоит из нескольких секций (ребер) — чем больше их количество, тем обширнее теплоотдача, при равных мощностях. Обогреватель поддерживает в комнате заданную температуру и в случае перегрева автоматически выключается. Как только температура начинает падать — включается.
Достоинства Невысокая температура нагрева корпуса (около 60 о С), благодаря чему не «сжигается» кислород пожаробезопасен, бесшумен благодаря термостату и таймеру некоторые модели не требуют отключения, высокая мобильность (наличие колёсиков позволяет легко перемещать их из комнаты в комнату)
Недостатки Сравнительно долгий прогрев помещения (однако и дольше сохраняют тепло), температура поверхности радиатора не позволяет свободно дотронуться до него (что крайне опасно при наличии в помещении детей), относительно большие габариты
Выводы Масляные радиаторы идеально подходят для обогрева квартир. Бесшумность, экономичность и безопасность здесь очень важны. Одного обогревателя достаточно для обогрева зала или спальни. Масляные радиаторы снабжены колесиками, и их можно легко переносить из комнаты в комнату. На лето масляный радиатор можно просто вынести в сарай или поставить в кладовку.

Точное вычисление тепловой мощности

Степень теплоизоляции и ее эффективность зависят от того, насколько качественно она сделана и от конструктивных особенностей зданий. Основная часть теплопотерь приходится на наружные стены (примерно 40%), затем следуют оконные конструкции (около 20%), а крыша и пол – это 10%. Остальное тепло покидает дом через вентиляцию и двери.

Поэтому расчет тепловой мощности системы отопления должен учитывать данные нюансы.

Для этого используют поправочные коэффициенты:

  • К1 зависит от типа окон. Двухкамерным стеклопакетам соответствует 1, обычному остеклению – 1,27, трехкамерному окну – 0,85;
  • К2 показывает степень теплоизоляции стен. Находится в пределе от 1 (пенобетон) до 1,5 для бетонных блоков и кладки в 1,5 кирпича;
  • К3 отражает соотношение между площадью окон и пола. Чем больше оконных рам, тем сильнее потери тепла. При 20% остекления коэффициент равен 1, а при 50% он увеличивается до 1,5;
  • К4 зависит от минимальной температуры снаружи здания на протяжении отопительного сезона. За единицу принимают температуру -20 °C, а затем на каждые 5 градусов прибавляют или вычитают 0,1;
  • К5 учитывает количество наружных стен. Коэффициент для одной стены равен 1, если их две или три, тогда он составляет 1,2, когда четыре – 1,33;
  • К6 отражает тип помещения, которое находится над определенной комнатой. При наличии сверху жилого этажа величина поправки – 0,82, теплого чердака – 0,91, холодного чердака – 1,0;
  • К7 – зависит от высоты потолков. Для высоты 2,5 метра это 1,0, а для 3-х метров – 1,05.

Когда все поправочные коэффициенты известны, делают расчет мощности системы отопления для каждого помещения, используя формулу:

Qi=qхSiхK1хK2хK3хK4хK5хK6хK7, где q =100 Вт/м², а Si – площадь комнаты.

Прямая взаимосвязь типа радиатора отопления и метода расчёта

При монтаже стандартных источников обогрева секционного типа не возникает сложностей, так как их мощность заранее указана среди остальных технических параметров.

При положении, когда фирма-изготовитель прописывает в характеристиках значение расхода теплоносителя, принято считать, что трата 1 литра этой жидкости в минуту равна 1 кВт мощности.

Важно! При рассмотрении различных вариантов батарей стоит помнить, что при одинаковых габаритах они имеют несовпадающие показатели мощности, так как исходный материал, варьируется от биметаллического до чугунного. ​. Для расчёта каждого типа радиаторов существует свой средний показатель мощности

Секция источника обогрева с расстоянием оси в 0,5 м выделяет тепло:

Для расчёта каждого типа радиаторов существует свой средний показатель мощности. Секция источника обогрева с расстоянием оси в 0,5 м выделяет тепло:

  • Чугун —145 Вт.
  • Биметалл —185 Вт.
  • Алюминий — 190 Вт.

Зачастую этот показатель отличается от вышеуказанных в силу того, что по высоте батареи отопления встречаются от 0,2 м до 0,6 м.

При нестандартных параметрах радиаторов отопления в методы расчёта теплового излучения вносятся корректировки.

Фото 1. Стальной радиатор для отопления модели Tesi 2 , дина секции 45 мм, производитель — «Irsap», Италия.

Чем ниже значение высоты источника обогрева (и, соответственно, его площадь), тем меньше показатель излучения тепла.

Внести корректировку в результат можно с помощью установленного коэффициента, полученного из пропорции существующей высоты радиатора к стандартному значению.

Правильный расчет теплоносителя в системе отопления

По совокупности признаков бесспорным лидером среди теплоносителей является обыкновенная вода. Лучше всего использовать дистиллированную воду, хотя подойдет и кипячёная или химически обработанная – для осаждения растворённых в воде солей и кислорода.

Однако если существует вероятность того, что температура в помещении с системой отопления на некоторое время опустится ниже нуля, то вода в качестве теплоносителя не подойдёт. Если она замёрзнет, то при увеличении объёма велика вероятность необратимого повреждения системы отопления. В таких случаях используют теплоноситель на базе антифриза.

Нормы температурных режимов помещений

Перед проведение любых расчётов параметров системы необходимо, как минимум, знать порядок ожидаемых результатов, а также иметь в наличии стандартизированные характеристики некоторых табличных величин, которые необходимо подставлять в формулы или ориентироваться на них.

Выполнив вычисления параметров с такими константами, можно быть уверенным в достоверности искомого динамического или постоянного параметра системы.

Для помещений разнообразного назначения существуют эталонные стандарты температурных режимов жилых и нежилых помещений. Эти нормы закреплены в так называемых ГОСТах

Для системы отопления одним из таких глобальных параметров является температура помещения, которая должна быть постоянной в независимости от периода года и условий окружающей среды.

А вот комнатная температура воздуха в зимний период обеспечивается системой отопления. Поэтому нам интересны диапазоны температур и их допуски отклонений для зимнего сезона.

В большинстве нормативных документов оговариваются следующие диапазоны температур, которые позволяют человеку комфортно находиться в комнате.

Для нежилых помещений офисного типа площадью до 100 м2:

  • 22-24°С – оптимальная температура воздуха;
  • 1°С – допустимое колебание.

Для помещений офисного типа площадью более 100 м2 температура составляет 21-23°С. Для нежилых помещений промышленного типа диапазоны температур сильно отличаются в зависимости от предназначения помещения и установленных норм охраны труда.

Комфортная температура помещения у каждого человека “своя”. Кто-то любит чтобы было очень тепло в комнате, кому-то комфортно когда в комнате прохладно – это всё достаточно индивидуально

Что же касаемо жилых помещений: квартир, частных домов, усадеб и т. д. существуют определённые диапазоны температуры, которые могут корректироваться в зависимости от пожеланий жильцов.

И всё же для конкретных помещений квартиры и дома имеем:

  • 20-22°С – жилая, в том числе детская, комната, допуск ±2°С –
  • 19-21°С – кухня, туалет, допуск ±2°С;
  • 24-26°С – ванная, душевая, бассейн, допуск ±1°С;
  • 16-18°С – коридоры, прихожие, лестничные клетки, кладовые, допуск +3°С

Важно отметить, что есть ещё несколько основных параметров, которые влияют на температуру в помещении и на которые нужно ориентироваться при расчёте системы отопления: влажность (40-60%), концентрация кислорода и углекислого газа в воздухе (250:1), скорость перемещения воздушных масс (0.13-0.25 м/с) и т. п

Расчет мощности котла отопления по площади

Для приблизительной оценки требуемой производительности теплового агрегата достаточно площади помещений. В самом простом варианте для средней полосы России считают, что 1кВт мощности может обогреть 10м 2 площади. Если у вас дом площадью 160м2, мощность котла для его обогрева — 16кВт.

Эти расчеты приблизительны, ведь не учитывается ни высота потолков, ни климат. Для этого существуют выведенные опытным путем коэффициенты, при помощи которых вносятся соответствующие корректировки.

Указанная норма — 1кВт на 10м 2 подходит для потолков 2,5-2,7м. Если у вас потолки в помещении выше, нужно вычислять коэффициенты и пересчитывать. Для этого высоту ваших помещений делим на стандартную 2,7м и получаем поправочный коэффициент.

Расчет мощности котла отопления по площади — самый простой способ

Например, высота потолков 3,2м. Считаем коэффициент: 3,2м/2,7м=1,18 округляем, получаем 1,2. Выходит, что для обогрева помещения 160м 2 с высотой потолков 3,2м требуется отопительный котел мощностью 16кВт*1,2=19,2кВт. Округляют обычно в большую сторону, так что 20кВт.

Чтобы учесть климатические особенности есть уже готовые коэффициенты. Для России они такие:

  • 1,5-2,0 для северных регионов;
  • 1,2-1,5 для подмосковных регионов;
  • 1,0-1,2 для средней полосы;
  • 0,7-0,9 для южных регионов.

Если дом находится в средней полосе, чуть южнее Москвы, применяют коэффициент 1,2 (20кВт*1,2=24кВт), если на юге России в Краснодарском крае, например, коэффициент 0,8, то есть мощность требуется меньше (20кВт*0,8=16кВт).

Расчет отопления и подбор котла — важный этап. Неправильно найдете мощность и можете получить такой результат…

Это основные факторы, которые учитывать необходимо. Но найденные значения справедливы, если котел будет работать только на отопление. Если требуется еще и греть воду, нужно добавить 20-25% от рассчитанной цифры. Потом требуется добавить «запас» на пиковые зимние температуры. Это еще 10%. Итого получаем:

  • Для отопления дома и ГВС в средней полосе 24кВт+20%=28,8кВт. Потом запас на холода — 28,8кВт+10%=31,68кВт. Округляем и получаем 32кВт. Если сравнивать с первоначальной цифрой в 16кВт, разница получается в два раза.
  • Дом в Краснодарском крае. Добавляем мощность для нагрева горячей воды: 16кВт+20%=19,2кВт. Теперь «запас» на холода 19,2+10%=21,12кВт. Округляем: 22кВт. Разница не столь разительная, но тоже достаточно приличная.

Из примеров видно, что учитывать хотя-бы эти значения нужно обязательно. Но очевидно, что в расчете мощности котла для дома и квартиры, разница быть должна. Можно пойти тем же путем и использовать коэффициенты для каждого фактора. Но есть более простой способ, который позволяет внести коррекции за один раз.

При расчете котла отопления для дома применяется коэффициент 1,5. Он учитывает наличие теплопотерь через кровлю, пол, фундамент. Справедлив при средней (нормальной) степени утепления стен — кладка в два кирпича или аналогичные по характеристикам стройматериалы.

Для квартир применяются другие коэффициенты. Если сверху находится отапливаемое помещение (другая квартира) коэффициент 0,7, если отапливаемый чердак — 0,9, если неотапливаемый чердак — 1,0. Нужно найденную по описанной выше методике мощность котла умножить на один из этих коэффициентов и получите достаточно достоверное значение.

Чтобы продемонстрировать ход вычислений, произведем расчет мощности газового котла отопления для квартиры 65м 2 с потолками 3м, которая расположена в средней полосе России.

  1. Определяем требуемую мощность по площади: 65м 2 /10м 2 =6,5кВт.
  2. Вносим поправку на регион: 6,5кВт*1,2=7,8кВт.
  3. Котел будет греть воду, потому добавляем 25% (любим погорячее) 7,8кВт*1,25=9,75кВт.
  4. Добавляем 10% на холода: 7,95кВт*1,1=10,725кВт.

Теперь результат округляем и получаем: 11Квт.

Указанный алгоритм справедлив для подбора отопительных котлов на любом виде топлива. Расчет мощности электрического котла отопления ничем не будет отличаться от расчета котла твердотопливного, газового или на жидком топливе. Основное — производительность и эффективность котла, а теплопотери от типа котла не изменяются. Весь вопрос в том, как потратить меньше энергоносителей. А это уже область утепления.

Особенности монтажа радиаторов

Под показателем L учитывают поправки на схему подключения радиаторов отопления.

Многие не берут этот показатель в расчет, но ничто не мешает сразу предусмотреть схему подключения радиаторов отопления. Специалисты знают, что схемы врезки труб сильно влияют на температурный баланс в комнате.

Рекомендуется также учесть коэффициент, учитывающий особенности места установки радиаторов — M. Очевидно, что «открытая» батарея, которой ничто не мешает источать тепло, будет давать максимальную теплоотдачу.

Но чаще всего радиаторы располагают под подоконниками, которые частично из скрывают. Нередко для создания интерьера помещения батареи и вовсе «прячут» от посторонних глаз, что напрямую сказывается на теплоотдаче. Если вы уже имеете представление о том, где будут расположены радиаторы, то учтите их в коэффициенте M.

Итоги расчетов Гкал по отоплению

Если вы правильно выполнили расчет потребления Гкал тепловой энергии, то вы можете не беспокоиться о переплатах за коммунальные услуги. Если воспользоваться вышеперечисленными формулами, то можно сделать вывод, что при отоплении жилого дома площадью до 200 кв.м. потребуется затратить около 3 Гкал за 1 месяц. Если учесть что отопительный сезон во многих регионах страны длится примерно 6 месяцев, то можно посчитать приблизительный расход тепловой энергии. Для этого 3 Гкал умножаем на 6 месяцев и получаем 18 Гкал.

Посчитать расход гигакалорий намного легче в частном доме, так как там можно установить свой индивидуальный прибор. В многоквартирных домах с централизованным отоплением обойтись обычным прибором не получится.

Исходя из информации указанной выше, можно сделать вывод, что все расчеты по расходу тепловой энергии в определенном доме можно сделать самостоятельно без помощи специальных организаций. Но стоит помнить, что все данные должны быть рассчитаны точно по специальным математическим формулам. Кроме этого все процедуры нужно согласовывать со специальными органами, которые контролируют такие действия. Если вы не уверены, что выполните расчет самостоятельно, то можете воспользоваться услугами профессиональных специалистов, которые занимаются такой работой и имеют в наличии материалы, подробно описывающие весь процесс и фото образцов системы отопления, а также их схемы подключения.

  1. В этой строчке квитанции часто стоит самая солидная сумма. В маленькой квартире — до двух тысяч, а в большой и за три легко может перевалить.
  2. Не всегда понятно, откуда эти цифры берутся. И почему кто-то платит за тепло летом?
  3. Когда осенью и весной топят в полную силу — приходится платить за жару и духоту. Или перекрывать батареи и распахивать форточки — и все равно платить.
  4. Иногда, наоборот, топят как-то неубедительно. Если зимой батареи не справлялись и пришлось обогреватели купить, сумма в квитанции раздражает особенно сильно.

Если у вас топили из рук вон плохо (в квартире меньше 18 °C днем или 15 °C ночью), можно попробовать добиться перерасчета.

Давайте разберемся, как считается плата за отопление и можно ли ее как-то уменьшить.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector