Золотое сечение в строительстве

Содержание:

Что такое золотое сечение где оно встречается и для чего применяется. Золотое сечение в природе и искусстве

Человечество за всю историю открыло несколько уникальных закономерностей, которые нашли широкое применение в самых разнообразных областях. Одна из них – золотое сечение.

Оно описывает разделение объекта на 2 части в том соотношении, в котором меньшая часть относится к большей, так же как большая часть относится к полному размеру объекта. В качестве примера этого запутанного определения можно привести деление прямоугольного листа: отрезая от полного листочка меньший прямоугольник, у последнего окажется то же соотношение сторон, что и у большого. Еще один пример – звезда с пятью концами: в этой геометрической фигуре каждый отрезок, соединяющий её лучи, разделяется по данному правилу пересекающим его отрезком.

Как появилось правило золотого сечения?

История возникновения уходит в далекое прошлое. Его описывал в труде «Начала» древний ученый и мыслитель Евклид, это первые документальные упоминания. Древнегреческий математик не единственный, кто заметил и активно использовал правило. Значительно позже его применял и Леонардо да Винчи, называя «божественной пропорцией», и Мартин Ом. Последний в 1835 году ввел в обиход этот термин.

Где можно встретить?

Золотое сечение в природе можно заметить у растений: они при росте сохраняют заданные пропорции. А немецкий ученый Цейзинг установил, что деление человеческого тела в точке пупка также соответствует данному правилу. Отмечено явление и в следующих областях:

  • архитектура – египетские пирамиды, построенные много веков назад;
  • музыка – произведения Моцарта и Бетховена;
  • скульптура – пропорции многих сооружений из камня строятся в соответствии с правилом;
  • живопись – художник Василий Суриков отмечал, что в написании картин существует закон о том, что в работу ничего нельзя ни добавить, ни убрать (используются те же самые математические принципы).

Сфера использования достаточно обширна, некоторым свойственно видеть его даже в бытовых мелочах, что, конечно, является сильным преувеличением. Тем не менее, правило, открытое еще в древние века, активно используется и в наши дни.

Высота крыши по золотому сечению. Точный расчет высоты двухскатной крыши

Классическая крыша русской избушки – двухскатная. Стропильная система для неё достаточно проста, и это обеспечило большую популярность такому виду крыши. Вальмовая крыша (четырёхскатная), например, геометрически сложнее. Её труднее рассчитать и построить, поэтому возьмёмся за расчёт симметричной крыши с двумя скатами.Расчёт её заключается в определении длины стропил, которые образуют пары. Каждая из этих пар присоединяется к соседним стропильным фермам при помощи обрешётки. Торцы крыши – это треугольные фронтоны. Длина стропил, как и высота крыши, будет определяться её углом. Как его выбрать правильно? Это подскажет преобладающая в местности погода.

Визуальная гармония

Интересно восприятие форм и пропорций архитектуры, примеры которых представлены ниже. Монументальные сооружения не давят своей массой, они воспринимаются легко, благодаря идеальным соотношениям сторон постройки.

Пирамида Гиза – одно из величайших творений человека, обладающее своими тайнами и загадками. Пирамида построена с применением знаний теории золотого сечения. Сейчас все больше ведется споров, а действительно ли пирамиды Египта возведены по принципам божественных пропорций.

Собор Рождества Девы Марии — беломраморный кафедральный собор в Милане, воспроизводящий готический стиль архитектуры. Как раз тот его момент, когда этот стиль постепенно стала приобретать черты, свойственные более позднему периоду неоготики.

Вам будет интересно:Как нарисовать юлу карандашом

Храм Спаса на Крови – здание, своей гармонией и утонченностью располагает к спокойному созерцанию. Сооружение относится к неорусскому стилю. Золотая пропорция соблюдена здесь идеально.

Такие, казалось бы, разные по архитектуре сооружения, обладающие только им присущей геометрией и линиями, все же имеют одну общую черту. Божественные пропорцию дали возможность внести эти произведения искусств в разряд мировых шедевров зодчества.

10.3 Понятие золотого сечения

Термин «золотое сечение» был введён Леонардо да Винчи для известного деления отрезка в так называемом «крайнем и среднем отношении», при котором большая его часть является средней пропорциональной между всем отрезком и меньшей частью (рис. 36).

Золотое сечение использовал в своём творчестве И. В. Жолтовский, а Ле Корбюзье положил его в основу своего «Модулора».

Золотое сечение выражают обычно числом 1,618 или обратным ему числом 0,618. По предложению Т. Куба и М. Бара для них приняты символы Ф и 1/Ф. Золотое сечение – это единственная геометрическая прогрессия, обладающая признаком аддитивного ряда (Ф3 = Ф1 + Ф2).

Рисунок 35 – Модулор Ле Корбюзье

Рисунок 36 – Деление отрезка по золотому сечению

10.1 Понятие о пропорции в архитектуре

Одним из важнейших методов построения выразительной и целостной архитектурной формы является пропорционирование.

Пропорция (лат. proportio) – соразмерность, определённое соотношение частей между собой. В современной литературе понятие пропорции употребляется в трёх основных значениях:

1.          Наиболее близкое к понятию соразмерности. Означает соотношение основных параметров формы (длина, ширина, высота). Именно это значение имеют в виду, когда говорят о пропорциях какого-либо здания, сооружения. Пропорция здесь характеризует объект как целое, составляет основу его образа.

2.          Под пропорцией в архитектуре (также, как и математике) понимают равенство отношений количественной меры одних и тех же объективных свойств в сопоставляемых формах или их частях. В математической форме записывают как а/в = c/d. Это значение понятия «пропорция» используется в большинстве работ, посвящённых пропорционированию в архитектуре. Из математической записи такого понимания следует, что здесь в основе образования целостной формы лежит принцип геометрического подобия. Наиболее распространённым в архитектуре примером применения пропорции как равенства математических отношений является образование формы на основе подобных прямоугольников, диагонали которых либо параллельны (прямая пропорция), либо перпендикулярны (обратная пропорция) (рис. 33).

Рисунок 33 – Виды пропорций на основе подобных прямоугольников

Пропорцию, средние члены которой равны между собой, называют непрерывной. Примером непрерывной пропорции может служить ряд подобных прямоугольников, в котором длина предыдущего прямоугольника равна ширине последующего.

3.          Под пропорцией в архитектуре понимают любую закономерность в соотношениях величин, которая связывает отдельные части и параметры формы в единое целое (наиболее правильное определение). Таким образом, пропорция в архитектуре есть понятие, отражающее однородность (закономерность) изменений количественной меры при переходах от одной части формы к другой и к форме в целом.

Первое и второе определения пропорции являются частными случаями последнего определения.

Греция

Страна, которая обладает богатым наследием архитектурных памятников, может дать много ответов на вопросы о золотом сечении. Пропорции в архитектуре Греции стремятся к идеальным. Одним из ярких примеров является храм Афины – Парфенон. Сооружение практически не имеет прямых линий, и соответствует золотому сечению, а пропорции скалы у его подножия также относятся к божественным.

Скульптуры и бюсты, созданные древнегреческими мастерами, имеют совершенные пропорции. Греческое искусство дает возможность понять, что человек, как творение божье, является идеально пропорциональной фигурой.

От редакции

Предлагаемая вниманию читателя книга проф. Г. Д. Гримм является результатом 40-летнего изучения автором вопросов архитектуры и, в частности, проблемы пропорциональности в архитектуре.

В вопросе о пропорциональности Г. Д. Гримм придерживался вначале точки зрения „музыкальной гармонии“ или классической схемы пропорциональности. Позднее, под влиянием взглядов эстетиков XIX века, в особенности Цейзинга, Г. Д. Гримм становится на точку зрения так называемого общего закона пропорциональности, математически формулируемого как принцип „золотого сечения“. На этой точке зрения Г. Д. Гримм стоит и сейчас в предлагаемой книге.

Богатая эрудиция и огромный материал, полученный автором в результате работы над сотнями архитектурных памятников различных стилей, делают книгу Г. Д. Гримма интересной для советского архитектора. Принципу „золотого сечения“ в архитектуре в книге дается солидное позитивное обоснование путем приведения математической трактовки зависимости элементов архитектурного сооружения.

Однако, необходимо отметить, что проблема пропорциональности и принцип „золотого сечения“ в архитектуре в книге трактуются несколько отвлеченно. Момент пропорциональности освещается оторванно от общей композиции и стиля архитектурного сооружения. Недостаточно отчетливо вскрываются характер и специфика пропорциональности различных архитектурных стилей в их историческом аспекте, что сделало бы понятными отклонения или несовпадения принципа „золотого сечения» с фактами и, вероятно, привело бы к формулированию исторической точки зрения на пропорциональность, выявляющей своеобразие принципов пропорциональности конкретных исторических стилей. Несмотря на это, самая попытка общей формулировки принципа „золотого сечения“ как основы пропорциональности архитектурных стилей, проверенная на материале античной и европейской архитектуры, заслуживает внимания, чтобы быть опубликованной, тем более, что в книге дается исторический очерк развития теории пропорциональности, а также развернутое математическое положение принципа „золотого сечения“.

Пропорции золотого сечения в материальном мире

В 1509 году Лука Пачоли написал книгу, которая называет число Ф «Божественной пропорцией», что было наглядно показано Леонардо да Винчи. Позже да Винчи назвал эту пропорцию золотым сечением. Оно использовалось для достижения баланса и красоты во многих картинах и скульптурах эпохи Возрождения.

Да Винчи сам использовал золотое сечение, чтобы определить все пропорции в «Тайной вечере», включая размеры стола, пропорции стен и деталей интерьера. Золотое сечение также появляется в «Витрувианском Человеке» да Винчи и «Мона Лизе». Считается, что золотое сечение использовали и другие великие художники, включая Микеланджело, Рафаэля, Рембрандта, Сьюрата и Сальвадора Дали.

Термин «фи» был придуман американским математиком Марком Барром в 1900-х годах. Ф продолжал применяться в математике и физике, в том числе в плитках Пенроуза 1970-х годов, которые позволяли мозаичным поверхностям иметь пятикратную симметрию. В 1980-х годах Ф появился в квазикристаллах – недавно открывшейся форме материи.

Фи — более чем загадочный и неясный термин в математике и физике. Он появляется вокруг нас в нашей повседневной жизни, даже в наших эстетических взглядах. Исследования показали, что когда испытуемые видят случайные лица, они считают наиболее привлекательными те, которые имеют четкие параллели с золотым сечением. Лица, оцененные как наиболее привлекательные, показывают золотые соотношения между шириной лица и шириной глаз, носа и бровей. Испытуемые не были математиками или физиками, знакомыми с правилом золотого сечения (они были просто среднестатистическими людьми), и оно вызвало инстинктивную реакцию.

Золотое сечение также проявляется во всех видах природы и науки. Ниже приведены примеры самых неожиданных мест, в которых можно его встретить.

  • Цветочные лепестки. Количество лепестков на некоторых цветах соответствует последовательности Фибоначчи. С точки зрения теории Дарвина считается, что каждый лепесток помещается таким образом, чтобы обеспечить максимально возможное воздействие солнечного света и других факторов.
  • Семенные головки. Семена цветка часто начинают произрастать в центре семенной головки и мигрируют наружу, заполняя свободное пространство. Например, семечки подсолнухов следуют этой схеме.
  • Сосновые шишки. Семенные коробочки сосновых шишек наполнены семенами, которые растут спирально вверх, в противоположных направлениях. Количество шагов, которые делают спирали, как правило, соответствует числам Фибоначчи.
  • Ветви дерева. То, как ветки дерева формируются или расщепляются, является примером последовательности Фибоначчи. Корневые системы и водоросли также придерживаются такого способа формирования.
  • Раковины. Многие раковины, в том числе раковины улитки и раковины наутилуса, являются прекрасными примерами золотой спирали.
  • Спиральные галактики. Млечный путь имеет несколько спиральных рукавов, каждый из которых имеет логарифмическую спираль примерно 12 градусов. Форма спирали идентична золотой спирали, а золотой прямоугольник можно нарисовать над любой спиральной галактикой.
  • Ураганы. Внутреннее строение ураганов часто следует правилу золотой спирали.
  • Пальцы руки человека. Каждый участок пальца от кончика основания до запястья больше, чем предыдущий, примерно на соотношение Ф.
  • Тела человека и животных. Расстояние от пупка человека до пола и от макушки головы до пупка – это золотое сечение. Но человек не единственный пример золотого сечения в животном мире. Дельфины, морские звезды, морские ежи, муравьи и пчелы также демонстрируют эту пропорцию.
  • Молекулы ДНК. Молекула ДНК имеет размеры 34 ангстрем на 21 ангстрем на каждом полном цикле спирали в виде сдвоенной спирали. В рядах Фибоначчи 34 и 21 являются последовательными числами.

Таким образом, примеров, где встречаются пропорции и соотношения, следующие правилу золотого сечения, более чем достаточно. Кроме перечисленных примеров, число «Фи» часто встречается в математике, физике, астрономии, биологии и иных сферах деятельности человека. Можно смело утверждать, что название «Божественное сечение» по праву присвоено числу Ф – видимо им руководствовался создатель, наполняя эту Вселенную всем живым и неживым.

Золотое сечение в дизайне интерьера

При планировании пространства рисуется планировка, которую разбивают на части по принципу золотой спирали. Зонирование пространства, производится в точном соответствии с точками пересечения основных линий – в этих точках будет находится мебель, ширмы, экраны и т. д.

Когда проектирует дом, то тоже придерживаются необходимых правил. Так, отношение самой большой комнаты к площади квартиры равняется как 0,62 к 1, меньшая с таким же соотношением к площади большой, кухня — к меньшей комнате, прихожая к кухне, санузел к прихожей, балкон – к санузлу.

Использование золотых пропорций в интерьере вашего дома, квартиры

Смотря на картинку ниже, сразу же бросается в глаза едва уловимая асимметрия, и легкий беспорядок. Золотое сечение помогает оформить интерьер, который будет давать чувство спокойствия и уюта. 

Красиво обустроенный домашний интерьерИсточник 1zoom.me

Следует запомнить, что идеальным по форме помещением является, такое у которого соотношение ширины к длине равно 5 к 8, или 1 к 1,62.

При проектировании первых многоквартирных домов, в начале прошлого века, использовалась система антропометрических пропорций, придуманная архитектором Ле Корбюзье.

Модулор Ле Корбюзье Источник /www.metalocus.es

Так называемый «модулор» представлял собой фигурку человека с поднятой рукой, рост и все пропорции которого, равнялись усредненным, реальным параметрам человеческого тела.

 Это еще раз доказывает, что наиболее удобным для человека жильем является дом, спроектированный в соответствии с законами божественной пропорции, которые проявляется в природе и в частности в человеческом теле.

Расстановка мебели по законам золотого сечения

Самое главное, что вам нужно запомнить это соотношение 2:3.

Для начала, необходимо визуально разделить пространство на две части: большая, которая составит две трети от общей площади, будет содержать мебель и станет основной зоной, и меньшая, предназначенная для вторичных функций, как отдельный уголок, или место для хранения.

Видео описание

В этом видео представлен пример применения принципа золотого сечения в обстановке дома:

Выбор цвета по правилам золотого сечения

Обычно при выборе цветовой гаммы пользуются соотношением 10-30-60, которое основывается на золотом сечении.

Таким образом, пространство должно состоять из трёх цветов: первый – доминирующий, который будет охватывать 60% комнаты, этот цвет припадает на стены и пол.

За ним следует второй, который составляет 30% — это мебель. И третий, составляющий 10%, используется для небольших предметов, тот же декор.

Правильное соотношение занимаемой мебелью площади Источник salexplorer.com

Подвесной декор

Разделите свободную площадь стены на три равные части по горизонтали и вертикали, прямоугольник, который окажется внутри и будет привлекать основное внимание гостей. 

Демонстрация гармоничного подвесного декораИсточник yandex.net

Золотое сечение в мебели

Необходимое число и нужные размеры мебели определяют, отталкиваясь от габаритов самых крупных ее представителей – шкафов, диванов, столов, и т. д. Например, если шкаф-стенка занимает две трети от всей площади комнаты, тогда диван-кровать должен быть в пределах 2/3 от величины шкафа. По тому же принципу строится соотношение размеров стола к дивану, кресел к столу, стульев к креслам и т.д. 

Гармоничная расстановка мебелиИсточник decoratw.com

То же самое и с декором, большие предметы комбинируются с более мелкими, с сохранением соотношения золотой пропорции.

Есть фирмы, которые выпускают целые наборы мебели, спроектированные, с уже правильным соотношением размеров отдельных элементов набора.

Уютный интерьер комнаты Источник yandex.net

Видео описание

Смотрите в видео примеры применения правила золотого сечения в интерьере:

Заключение

Золотое сечение — это соотношение одной величины к другой на 1,618. Применяется в искусстве, дизайне логотипов и других областях жизни людей. Но первоначально этот принцип был выведен из природы: строения ракушки, уха человека, вселенной, ДНК.

У людей, которые знают правило золотого сечения, как правило, не возникает трудностей с правильной и гармоничной расстановкой мебели в комнате, и различных элементов декора. Также эта информация помогает и в ландшафтном дизайне, более эстетично и правильно благоустроить сад и огород, детскую площадку.

Строение морских раковин

Ученые, изучавшие внутреннее и внешнее строение раковин мягкотелых моллюсков, обитающих на дне морей, констатировали:

«Внутренняя поверхность раковин безупречно гладкая, а внешняя вся покрыта шероховатостями, неровностями. Моллюск был в раковине и для этого внутренняя поверхность раковины должна была быть безупречно гладкой. Внешние углы-изгибы раковины увеличивают ее крепость, твердость и таким образом повышают ее прочность. Совершенство и поразительная разумность строения ракушки (улитки) восхищает. Спиральная идея раковин является совершенной геометрической формой и удивительна по своей отточенной красоте.»

У большинства улиток, которые обладают раковинами, раковина растет в форме логарифмической спирали. Однако нет сомнения, что эти неразумные существа не имеют представления не только о логарифмической спирали, но не обладают даже простейшими математическими знаниями, чтобы самим создать себе спиралевидную раковину.

Но тогда как же эти неразумные существа смогли определить и избрать для себя идеальную форму роста и существования в виде спиральной раковины? Могли ли эти живые существа, которых ученых мир называет примитивными формами жизни, рассчитать, что идеальной для их существования будет логарифмическая форму ракушки?

Конечно же нет, потому что такой замысел невозможно осуществить без наличия разума и знаний. Но таковым разумом не обладают ни примитивные моллюски, ни бессознательная природа, которую, правда, некоторые ученые называют создательницей жизни на земле(?!)

Пытаться объяснить происхождение подобной даже самой примитивной формы жизни случайным стечением неких природных обстоятельств по меньшей мере абсурдно. Совершенно ясно, что этот проект является осознанным творением.

Биолог Сэр Д`арки Томпсон этот вид роста морских раковин называет «форма роста гномов».

Сэр Томпсон делает такой комментарий:

Наутилус, размером в несколько сантиметров в диаметре, представляет собой самый выразительный пример гномового вида роста. С.Моррисон так описывает этот процесс роста наутилуса, спланировать который даже человеческим разумом представляется довольно сложным:

«Внутри раковины наутилуса есть множество отделов-комнат с перегородками из перламутра, причем сама раковина внутри представляет собой спираль, расширяющуюся от центра. По мере роста наутилуса в передней части ракушки нарастает еще одна комнатка, но уже больших размеров, чем предыдущая, а перегородки оставшейся позади комнатки покрываются слоем перламутра. Таким образом, спираль все время пропорционально расширяется.»

Приведем лишь некоторые типы спиралевидных раковин имеющих логарифмическую форму роста в соответствии с их научными названиями: Haliotis Parvus, Dolium Perdix, Murex, Fusus Antiquus, Scalari Pretiosa, Solarium Trochleare.

Все обнаруженные ископаемые останки раковин также имели развитую спиральную форму.

Однако логарифмическая форма роста встречается в животном мире не только у моллюсков. Рога антилоп, диких козлов, баранов и прочих подобных животных также развиваются в виде спирали по законам золотой пропорции.

Использование Золотого сечения

Считается, что Золотое сечение использовалось как минимум 4000 лет в изобразительном искусстве и дизайне. В более современные времена Золотое сечение можно наблюдать в музыке, искусстве и дизайне. Применяя аналогичную рабочую методологию, вы можете привнести те же ощущения дизайна в вашу собственную работу.

Давайте посмотрим на пару примеров.

Древнегреческая архитектура использует Золотое сечение для определения нужных размеров

Древнегреческая архитектура использовала Золотое сечение, чтобы определить идеальные размерные соотношения между шириной здания и его высотой, размером портика и даже положением колонн, поддерживающих конструкцию.

Конечный результат — здание, которое ощущается полностью пропорционально. Неоклассическое архитектурное движение также повторно использовало эти принципы.

Леонардо да Винчи широко использовал Золотое сечение

Леонардо да Винчи, как и многие другие художники на протяжении веков, широко использовал Золотое сечение для создания идеальных композиций. В «Тайной вечере» фигуры располагаются в нижних двух третях (большей из двух частей Золотого сечения), и положение Иисуса идеально строится путем расположения золотых прямоугольников по всему холсту.

Есть также многочисленные примеры Золотого сечения в природе — вы можете наблюдать это вокруг себя. Цветы, морские раковины, ананасы и даже соты.

Создание золотого сечения

Создание золотого прямоугольника довольно просто, и начинается с базового квадрата. Выполните следующие действия, чтобы создать свое собственное Золотое сечение:

01. Нарисуйте квадрат

Начните с рисования квадрата любого размера. Сторона этого квадрата будет формировать длину «короткой стороны» прямоугольника.

Разделите ваш квадрат пополам вертикальной линией по центру. В результате получится два прямоугольника.

В одном из этих прямоугольников нарисуйте прямую линию от одного угла до противоположного угла.

04. Поверните линию

Поверните эту линию, поворачивая от нижней (или верхней) точки, пока она не совпадет с нижней частью первого прямоугольника.

05. Создайте новый прямоугольник

Создайте прямоугольник, используя новую горизонтальную линию и исходный прямоугольник в качестве направляющих. Это будет ваш золотой прямоугольник.

Использование Золотого сечения проще, чем вы думаете. Есть несколько быстрых трюков, которые вы можете использовать, чтобы представить идею в своих макетах.

Быстрый способ

Если вы когда-либо сталкивались с «Правилом третей», вы будете знакомы с идеей, что, разделив область на равные трети как по вертикали, так и по горизонтали, пересечение линий обеспечит естественный фокус для фигуры.

Фотографов учат размещать ключевой объект на одной из этих пересекающихся линий, чтобы получить идеальную композицию, и тот же принцип можно использовать в макетах страниц, макетах веб-сайтов и в постерах.

Правило третей может быть применено к любой фигуре, если вы примените его к прямоугольнику с пропорциями приблизительно 1: 1,6, вы получите золотой прямоугольник, что делает композицию еще более приятной для глаз.

Полная реализация Золотого сечения

Если вы хотите полностью внедрить Золотое сечение в свой дизайн, вы можете сделать это, обеспечив соотношение между областью содержимого и боковой панелью (например, в дизайне веб-сайта) в соотношении 1: 1,61.

Можно округлить это число вверх или вниз на одну или две точки, чтобы получить числа с пикселями или точками. Поэтому, если у вас есть область содержимого 640 пикселей, боковая панель 400 пикселей будет достаточно хорошо соответствовать золотому сечению.

Использование Золотого сечения в макете веб-страницы обеспечивает естественный, приятный результат.

Конечно, вы также можете разделить области контента и боковой панели вверх, используя одинаковое соотношение, и связь между верхним колонтитулом, областью контента, нижним колонтитулом и навигацией также может быть разработана с использованием того же базового золотого коэффициента.

Идеальный треугольник и пентаграмма

Идеальным называют равнобедренный треугольник, основание которого относится к длине стороны как 1/3. То есть, снова-таки соблюдается золотое сечение. Начертить треугольник с идеальным соотношением сторон несложно. Удобнее циркулем, но можно обойтись и линейкой.

Золотой треугольник, правило его построения и применение в создании интерьера, например

Построение такое. На прямой от точки A трижды откладываем отрезок произвольной длины. Эту длину обозначим O. Получаем точку B. Через нее проводим прямую, перпендикулярную отрезку AB. На этой линии в обе стороны от точки B откладываем величину O. Получаем две точки d и d1. Соединяем их с точкой A. Вот и получили треугольник, стороны которого относятся как 1,62. Проверить это можно, если отложить при помощи циркуля длину основания на боковой стороне (точка C). Вторая проверка — противолежащий угол составляет 36°.

Построение пентаграммы несколько сложнее. Ее вписываем в круг, без циркуля не обойтись.

  • Центр окружности обозначаем O, через него проводим прямую до пересечения с окружностью. Одну из точек пересечения обозначаем A. Отрезок OA — диаметр окружности.
  • Находим середину отрезка OD, ставим точку E. Из центра окружности вверх до пересечения с окружностью восстанавливаем перпендикуляр. Это точка D.

Построение пентаграммы

  • Соединяем точки E и D. При помощи циркуля откладываем на радиусе точку C. Отрезок СD равен длине отрезка ED. Циркулем замеряем длину отрезка ED. Иглу ставим в точку E, ведем грифель до пересечения с радиусом. Вот и получили точку C.
  • Длинна отрезка DC — сторона пентаграммы. Замеряем ее, при помощи циркуля переносим на окружность. Для этого циркулем с отложенным расстоянием ставим еще четыре точки на окружности, поочередно соединив их, получаем пентаграмму.

Вот что интересно, если вершины полученной пентаграммы использовать для прорисовки звезды, она будет состоять из идеальных треугольников.

Неоготика XIX века

Этот стиль продолжает древние готические направления и предшествует Викторианской эпохе. Пропорции в архитектуре Неоготики 19 века подарили и своим последователям мрачные сводчатые, уходящие ввысь здания, которые повторяют такие же заостренные проемы окон и дверей. Расположение башен, порталов и сводов подвержено четкому сухому ритму числа 1,68…

Неоготика, соблюдая традиции готической архитектуры, все же становится менее темной. В ней, соблюдая божественные пропорции, соединяются разные стили и направления архитектуры, при этом сохраняя общую тематическую направленность. Сочетания круглых окон с уходящими вверх стрельчатыми сводами и башнями также подвержены золотому сечению, что составляет гармоничное восприятие всего сооружения в целом.

Мифы и диковинные факты о пирамиде

Пирамида Хеопса также выстроена с учётом этого условия. Не вдаваясь в математическое доказательство наличия золотой формулы, скажем только, что в нём присутствуют прямоугольный золотой треугольник, сторонами которого являются высота и половина стороны основания строения. Ничего удивительного?

Но тогда возникает вопрос об уровне древнеегипетской математики. Выходит, что теорема Пифагора была им известна за два тысячелетия до рождения самого учёного

Внимание привлекает факт, что наследники Хеопса строили свои пирамиды уже с другими пропорциями. Почему?

Установлено, что сооружения пирамидальной формы с ЗС оказывают на находящихся в них феноменальное воздействие: растения лучше растут, металлы становятся прочнее, вода долго остаётся свежей. Учёные много лет работают с этими загадками, но тайна остаётся.

Замечено, что пирамида приводит структуру пространства в слаженное состояние. Всё, что попадает в зону действия, тоже организуется подобным образом: психоэмоциональное состояние людей улучшается, вредные для человека излучения уменьшаются, исчезают геопатогенные зоны. Интернет утверждает, что если размер фигуры увеличивается в два раза, то влияние пирамиды усиливается в сто раз.

5 способов соблюдать правило в интерьере

  1. В доме, построенном без учёта соотношения, можно сделать перепланировку комнат, чтобы пропорции соответствовали.
  2. Иногда достаточно переставить мебель или сделать дополнительную перегородку.
  3. Аналогичным образом меняется высота и длина окон и дверей.
  4. В цветовом оформлении получение упрощённого соотношения достигается за счёт 60% основного цвета, 30% — оттеняющего, и остальных 10% — усиливающих восприятие тонов.
  5. Высота и длина мебели должна соизмеряться высотой потолков и шириной простенков.

Приложение этой нормы в интерьере, как архитектурно оформленном пространстве, объединяют с понятиями самоорганизации, рекурсии, асимметрии, красоты.

Использование золотого сечения в дизайне

Принципы использования универсальной пропорции все чаще используют при строительстве частных домов

Особое внимание уделяется соблюдению оптимальных пропорций конструкции. Немало внимания уделяют правильному распределению внимания внутри дома

Современная интерпретация золотого сечения уже не относится лишь к правилам геометрии и формы. Сегодня принципу гармонических пропорций подчиняются не только размеры деталей фасада, площадь комнат или длины фронтонов, но и цветовая палитра, используемая при создании интерьера.

Соорудить гармоничное строение на модульном основании гораздо проще. Многие отделения и помещения в этом случае выполняются как отдельные блоки. Они проектируются в строгом соответствии с гармоническим правилом. Возвести здание как набор отдельных модулей, значительной проще, чем создавать единую коробку.

Многие фирмы, занимающиеся сооружением загородных домов, при создании проекта соблюдают гармоническое правило. Это позволяет создать у клиентов впечатление, что конструкция здания детально проработана. Такие дома обычно описывают, как наиболее гармоничные и комфортные в использовании. При оптимальном выборе площадей комнат жильцы психологически ощущают успокоение.

Если дом возведен без учета гармонических пропорций, можно создать планировку, которая будет по соотношению размеров стен приближена к показателю 1:1,61. Для этого в комнатах устанавливают дополнительные перегородки, или переставляют предметы мебели.

Аналогично меняют габариты дверей и окон таким образом, чтобы проем имел ширину, показатель которой меньше значения высоты в 1,61 раза.

Сложнее подбирать цветовые решения. В этом случае можно соблюдать упрощенное значение золотого сечения – 2/3. Основным цветовым фоном следует занять 60% пространства комнаты. Оттеняющий оттенок занимает 30% помещения. Оставшаяся площадь поверхностей закрашивается близкими друг к другу тонами, усиливающими восприятие выбранного цвета.

Внутренние стены комнат делят горизонтальной полосой. Ее располагают в 70 см от пола. Высота мебели должна находиться в гармоническом соотношении с высотой стен. Это правило относится и к распределению длин. К примеру, диван должен иметь габариты, которые бы оказались не меньше 2/3 длины простенка. Площадь помещения, которая занята предметами мебели, тоже должна иметь определенное значение. Она относится к общей площади всего помещения как 1:1,61.

Золотая пропорция сложно применима на практике ввиду наличия всего одного числа. Именно поэтому. Проектирую гармоничные строения, пользуются рядом чисел Фибоначчи. Благодаря этому обеспечивается разнообразие вариантов форм и пропорций деталей строения. Ряд чисел Фибоначчи также носит название золотого. Все значения строго соответствуют определенной математической зависимости.

Кроме ряда Фибоначчи, в современной архитектуре применяют и другой метод проектирования – принцип, заложенный французским архитектором Ле Корбюзье. При выборе этого способа отправной единицей измерения выступает рост владельца дома. Исходя из этого показателя рассчитывают размеры здания и внутренних помещений. Благодаря этому подходу дом получается не только гармоничным, но и приобретает индивидуальность.

Любой интерьер приобретет более завершенный вид, если в нем использовать карнизы. При использовании универсальных пропорций можно вычислить его размер. Оптимальными показателями являются 22,5, 14 и 8,5 см. Устанавливать карниз следует по правилам золотого сечения. Маленькая сторона декоративного элемента должна относиться к большей так, как относится к сложенным значениям двух сторон. Если большая сторона будет равна 14 см, то маленькую стоит сделать 8,5 см.

Придать помещению уюта можно путем деления стеновых поверхностей при помощи гипсовых зеркал. Если стена поделена бордюром, от оставшейся большей части стены следует отнять высоту карнизной планки. Для создания зеркала оптимальной длины от бордюра и карниза следует отступить одинаковое расстояние.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector