Расчет системы вентиляции и ее отдельных элементов: площади, диаметров труб, параметров нагревателей и диффузоров

Расчет нормального воздухообмена для эффективной вентиляции квартиры или дома

Итак, при нормальной работе вентиляции в течение часа воздух в помещениях должен постоянно меняться. Действующими руководящими документами (СНиП и СанПиН) установлены нормы притока свежего воздуха в каждое из помещений жилой зоны квартиры, а также минимальные объемы его вытяжки через каналы, расположенные на кухне, в ванной в санузле, иногда – и в некоторых других специальных помещениях.

Эти нормативы, опубликованные в нескольких документах, для удобства читателя объединены в одну таблицу, показанную ниже:

Тип помещения Минимальные нормы воздухообмена (кратность в час или кубометров в час)
ПРИТОК ВЫТЯЖКА
Требования по Своду Правил СП 55.13330.2011 к СНиП 31-02-2001 «Одноквартирные жилые дома»
Жилые помещения с постоянным пребыванием людей Не менее однократного обмена объема в течение часа
Кухня 60 м³/час
Ванная, туалет 25 м³/час
Остальные помещения Не менее 0,2 объема в течение часа
Требования по Своду Правил СП 60.13330.2012 к СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование воздуха»
Минимальный расход наружного воздуха на одного человека: жилые помещения с постоянным пребыванием людей, в условиях естественного проветривания:
При общей жилой площади более 20 м² на человека 30 м³/час, но при этом не менее 0,35 от общего объема воздухообмена квартиры в час
При общей жилой площади менее 20 м² на человека 3 м³/час на каждый 1 м² площади помещения
Требования по Своду Правил СП 54.13330.2011 к СНиП 31-01-2003 «Здания жилые многоквартирные»
Спальная, детская, гостиная Однократный обмен объема в час
Кабинет, библиотека 0,5 от объема в час
Бельевая, кладовка, гардеробная 0,2 от объема в час
Домашний спортзал, биллиардная 80 м³/час
Кухня с электрической плитой 60 м³/час
Помещения с газовым оборудованием Однократный обмен + 100 м³/час на газовую плиту
Помещение с твёрдотопливным котлом или печью Однократный обмен + 100 м³/час на котел или печь
Домашняя прачечная, сушилка, гладильная 90 м³/час
Душевая, ванная, туалет или совмещенный санузел 25 м³/час
Домашняя сауна 10 м³/час на каждого человека

Пытливый читатель наверняка заметит, что нормативы по разным документам несколько отличаются. Причем, в одном случае нормы устанавливаются исключительно по размерам (объему) помещения, а другом – по количеству людей постоянно пребывающих в этом помещении. (Под понятием постоянного пребывания имеется в виду нахождение в комнате 2 часа и более).

Поэтому при проведении расчетов вычисления минимального объема воздухообмена желательно проводить по всем доступным нормативам. А затем – выбрать результат с максимальным показателем – тогда ошибки точно не будет.

Провести быстро и точно расчет притока воздуха для всех помещений квартиры или дома поможет первый предлагаемый калькулятор.

Калькулятор расчета требуемых объемов притока воздуха для нормальной вентиляции

Как видите, калькулятор позволяет провести вычисления и от объёмов помещений, и от количества постоянно пребывающих в них людей. Повторимся, желательно провести оба расчета, а затем выбрать из двух получившихся результатов, если они будут различаться, максимальный.

Проще будет действовать, если заранее составить небольшую таблицу, в которой перечислены все помещения квартиры или дома. А затем в нее вносить полученные значения притока воздуха – для комнат жилой зоны, и вытяжки – для помещений, где предусмотрены вытяжные вентиляционные каналы.

К примеру, это может выглядеть так:

Помещение и его площадь Нормы притока   Нормы вытяжки  
1 способ – по объему комнаты 2 способ – по количеству людей 1 способ 2 способ
Гостиная, 18 м² 50
Спальная, 14 м² 39
Детская, 15 м² 42
Кабинет, 10 м² 14
Кухня с газовой плитой, 9 м² 60
Санузел
Ванная
Гардероб-кладовая, 4 м²
Суммарное значение 177
Принимаемое общее значение воздухообмена

Затем суммируются максимальные значения (они в таблице для наглядности выделены подчёркиванием), отдельно для притока и для вытяжки воздуха. А так как при работе вентиляции должно соблюдаться равновесие, то есть сколько воздуха в единицу времени поступило в помещения – столько же должно и выйти, итоговым выбирается также максимальное значение из полученных двух суммарных. В приведенном примере – это 240 м³/час.

Этот значение и должно быть показателем суммарной производительности вентиляции в доме или квартире.

Расчет систем вентиляции

21 июня 2017 года

Производительность по воздуху

Расчет системы вентиляции начинается с определения производительности по воздуху (воздухообмена), измеряемой в кубометрах в час. Для расчетов нам потребуется план объекта, где указаны наименования (назначения) и площади всех помещений.

Подавать свежий воздух требуется только в те помещения, где люди могут находиться длительное время: спальни, гостиные, кабинеты и т. п. В коридоры воздух не подается, а из кухни и санузлов удаляется через вытяжные каналы. Таким образом, схема движения воздушных потоков будет выглядеть следующим образом: свежий воздух подается в жилые помещения, оттуда он (уже частично загрязненный) попадает в коридор, из коридора — в санузлы и на кухню, откуда удаляется через вытяжную вентиляцию, унося с собой неприятные запахи и загрязнители. Такая схема движения воздуха обеспечивает воздушный подпор «грязных» помещений, исключая возможность распространения неприятных запахов по квартире или коттеджу.

Для каждого жилого помещения определяется количество подаваемого воздуха. Расчет обычно ведется в соответствии со  СНиП 41-01-2003 и МГСН 3.01.01. Поскольку СНиП задает более жесткие требования, то в расчетах мы будем ориентироваться на этот документ. В нем говорится, что для жилых помещений без естественного проветривания (то есть там, где окна не открывают) расход воздуха должен составлять не менее 60 м³/ч на человека. Для спален иногда используют меньшее значение — 30 м³/ч на человека, поскольку в состоянии сна человек потребляет меньше кислорода (это допустимо по МГСН, а также по СНиП для помещений с естественным проветриванием). При расчете учитываются только люди, находящиеся в помещении длительное время. Например, если у вас в гостиной пару раз в году собирается большая компания, то увеличивать производительность вентиляции из-за них не нужно. Если же вы хотите, чтобы гости чувствовали себя комфортно, можно установить VAV-систему, которая позволяет регулировать расход воздуха раздельно в каждом помещении. С такой системой вы сможете увеличить воздухообмен в гостиной за счет его снижения в спальне и других помещениях.

После расчета воздухообмена по людям нам нужно рассчитать воздухообмен по кратности (этот параметр показывает, сколько раз в течение одного часа в помещении происходит полная смена воздуха). Чтобы воздух в помещении не застаивался, нужно обеспечить хотя бы однократный воздухообмен.

Таким образом, для определения требуемого расхода воздуха нам нужно рассчитать два значения воздухообмена: по количеству людейи по кратности и, после чего выбрать большее из этих двух значений:

  1. Расчет воздухообмена по количеству людей: L = N * Lnorm, где
    L — требуемая производительность приточной вентиляции, м³/ч;
    N — количество людей;
    Lnorm — норма расхода воздуха на одного человека:

    •      в состоянии покоя (сна) — 30 м³/ч;
    •      типовое значение (по СНиП) — 60 м³/ч;
  2. Расчет воздухообмена по кратности: L = n * S * H, где
    L — требуемая производительность приточной вентиляции, м³/ч;
    n — нормируемая кратность воздухообмена:
    для жилых помещений – от 1 до 2, для офисов – от 2 до 3;
    S — площадь помещения, м²;
    H — высота помещения, м;

Рассчитав необходимый воздухообмен для каждого обслуживаемого помещения, и сложив полученные значения, мы узнаем общую производительность системы вентиляции. Для справки типовые значения производительности вентиляционных систем:

  • Для отдельных комнат и квартир — от 100 до 500 м³/ч;
  • Для коттеджей — от 500 до 2000 м³/ч;
  • Для офисов — от 1000 до 10000 м³/ч.

Расчет естественной вытяжной вентиляции

Потом, в связи от участка открытия верхних и нижних соответственно, приточных и вытяжных фрамуг в помещении приблизительно в центре высоты сооружения получается степень одинаковых давлений, в этом месте влияние точно также нулю. В соответствии, влияние в степени сосредоточении нижних просветов станет равняться:

  • где ср– равна средней температуре плотности воздушных масс в помещении, кг/м3;
  • h1– высoта oт плоскости одинаковых давлений до нижних просветов, м.

На уровне центров верхних просветов, выше плоскости одинаковых давлений образуется избыточное напряжение, Па, равняющееся:

Именно это давление и оказывает воздействие на вытяжку воздуха. Общее напряжение, располагающее для обмена воздушных потоков в комнате:

Калькулятор для расчета и подбора компонентов системы вентиляции

в частных домах и квартирах

Калькулятор позволяет рассчитать основные параметры вентиляционной системы по методике, о которой рассказывается в разделе Расчет систем вентиляции. С его помощью можно определить:

  • Производительность системы, обслуживающей до 4-х помещений.
  • Размеры воздуховодов и воздухораспределительных решеток.
  • Сопротивление воздухопроводной сети.
  • Мощность калорифера и ориентировочные затраты на электроэнергию (при использовании электрического калорифера).

Пример расчета, расположенный ниже, поможет вам разобраться с тем, как пользоваться калькулятором.

Пример расчета вентиляции с помощью калькулятора

На этом примере мы покажем, как рассчитать приточную вентиляцию для 3-х комнатной квартиры, в которой живет семья из трех человек (двое взрослых и ребенок). Днем к ним иногда приезжают родственники, поэтому в гостиной может длительное время находиться до 5 человек. Высота потолков квартиры — 2,8 метра. Параметры помещений:

Нормы расхода для спальни и детской зададим в соответствии с рекомендациями СНиП — по 60 м³/ч на человека. Для гостиной ограничимся 30 м³/ч, поскольку большое количество людей в этой комнате бывает нечасто. По СНиП такой расход воздуха допустим для помещений с естественным проветриванием (для проветривания можно открыть окно). Если бы мы и для гостиной задали расход воздуха 60 м³/ч на человека, то требуемая производительность для этого помещения составила бы 300 м³/ч. Стоимость электроэнергии для нагрева такого количества воздуха оказалась бы очень высокой, поэтому мы пошли на компромисс между комфортом и экономичностью. Для расчета воздухообмена по кратности для всех помещений выберем комфортный двукратный воздухообмен.

Магистральный воздуховод будет прямоугольным жестким, ответвления — гибкими шумоизолированными (такое сочетание типов воздуховодов не самое распространенное, но мы выбрали его в демонстрационных целях). Для дополнительной очистки приточного воздуха будет установлен угольно-пылевой фильтр тонкой очистки класса EU5 (расчет сопротивления сети будем вести при загрязненных фильтрах). Скорости воздуха в воздуховодах и допустимый уровень шума на решетках оставим равными рекомендуемым значениям, которые заданы по умолчанию.

Расчет начнем с составления схемы воздухораспределительной сети. Эта схема позволит нам определить длину воздуховодов и количество поворотов, которые могут быть как в горизонтальной, так и вертикальной плоскости (нам нужно посчитать все повороты под прямым углом). Итак, наша схема:

Сопротивление воздухораспределительной сети равно сопротивлению самого длинного участка. Этот участок можно разделить на две части: магистральный воздуховод и самое длинное ответвление. Если у вас есть два ответвления примерно одинаковой длины, то нужно определить, какое из них имеет большее сопротивление. Для этого можно принять, что сопротивление одного поворота равно сопротивлению 2,5 метров воздуховода, тогда наибольшее сопротивление будет иметь ответвление, у которого значение (2,5* кол-во поворотов + длина воздуховода) максимально. Выделять из трассы две части необходимо для того, чтобы можно было задать разный тип воздуховодов и разную скорость воздуха для магистрального участка и ответвлений.

В нашей системе на всех ответвлениях установлены балансировочные дроссель-клапаны , позволяющие настроить расходы воздуха в каждом помещении в соответствии с проектом. Их сопротивление (в открытом состоянии) уже учтено, поскольку это стандартный элемент вентиляционной системы.

Длина магистрального воздуховода (от воздухозаборной решетки до ответвления в помещение № 1) — 15 метров, на этом участке есть 4 поворота под прямым углом. Длину приточной установки и воздушного фильтра можно не учитывать (их сопротивление будет учтено отдельно), а сопротивление шумоглушителя можно принять равным сопротивлению воздуховода той же длины, то есть просто посчитать его частью магистрального воздуховода. Длина самого длинного ответвления составляет 7 метров, на нем есть 3 поворота под прямым углом (один — в месте ответвления, один — в воздуховоде и один — в адаптере). Таким образом, мы задали все необходимые исходные данные и теперь можем приступать к расчетам (скриншот). Результаты расчета сведены в таблицы:

Разновидности труб для вентиляции

Основная задача вентиляционной системы – отвод загрязненного воздуха из помещения.

Эффективность и надежность всей системы зависит от выбора типа вентиляционной трубы.

  • минимальный диаметр трубы для вентиляции в частном доме должен составлять 15 см;
  • поверхности воздуховода должны быть устойчивы к коррозии;
  • вес конструкции влияет на сложность монтажных работ и обслуживание;
  • размер сечения воздуховода влияет на пропускную способность;
  • все элементы системы должны соответствовать требованиям пожарной безопасности.

Важным критерием выбора вентиляционной трубы является материал, из которого она изготавливается. Ниже рассмотрены самые популярные из них.

Пластиковые трубы

Пластиковые воздуховоды производятся из полипропилена, полиуретана и поливинилхлорида. Они отличаются большим разнообразием форм и размеров, наиболее популярными являются круглые и прямоугольные.

Данные типы труб получили широкое распространение благодаря целому ряду достоинств.

Преимущества круглых и прямоугольных пластиковых воздуховодов:

  • относительно небольшой вес, благодаря чему монтаж системы может осуществляться одним человеком, кроме того, не создается избыточная нагрузка на подвесные кухонные конструкции;
  • низкая уязвимость для воздействия влаги и химических веществ;
  • хорошая герметичность;
  • простота в обслуживании;
  • широкий диапазон рабочих температур;
  • низкий уровень шума при работе;
  • большой срок службы;
  • эстетичный вид;
  • экологичность;
  • устойчивость к появлению коррозии.

К недостаткам пластиковых труб можно отнести необходимость использовать дополнительные соединительные элементы при монтаже, а также то, что сам процесс установки достаточно сложный и требует специальной подготовки.

Гофрированные трубы

Самым дешевым вариантом для вентиляционной системы является гофрированная труба. Она состоит из металлических колец, обернутых ламинированной фольгой.

В изначальном состоянии кольца плотно прилегают друг к другу, но в процессе монтажа расстояние между ними способно увеличиваться за счет растягивания оболочки, а сама труба может вытягиваться и изгибаться под нужным углом.

Этими свойствами объясняется универсальность труб при монтаже: они легко устанавливаются в самых труднодоступных местах, а весь процесс не вызывает особой сложности.

Важно помнить! При неполном растяжении гофрированной трубы, а также сильном изгибе появляется дополнительное сопротивление потоку воздуха, что вызывает характерный шум.

Основные преимущества гофрированных воздуховодов:

  • срок службы — до 50 лет;
  • допустимое нагревание поверхностей — до 250 °С;
  • устойчивость к воздействию влаги и коррозии;
  • относительно легкий монтаж.

Металлические воздуховоды

Материалом для изготовления металлических вентиляционных труб служит оцинкованная или нержавеющая сталь. Они устойчивы к появлению ржавчины и имеют небольшой вес.

Такой тип воздуховода стоит выбирать для установки в помещениях с повышенным содержанием влаги и большими колебаниями температур. 

Для монтажа металлических вентиляционных труб достаточно минимальных знаний и навыков.

Тканевые воздуховоды

Воздуховод такого типа представляет собой вентиляционный канал, сделанный из ткани, закрепленный с помощью специальных колец на потолке. За счет давления воздуха, проходящего внутри, конструкции придается форма трубы.

Материалом для изготовления служат полиамид, полиэстер или полиэфир. Тканевые воздуховоды встречаются достаточно редко и изготавливаются на заказ. Для проектировки потребуется опытный специалист.

Основные преимущества:

  • быстрый монтаж;
  • небольшой вес;
  • отсутствие конденсата;
  • низкий уровень шума;
  • устойчивость к коррозии;
  • удобство в обслуживании.

Помимо материала, при подборе и расчете воздуховода необходимо учитывать форму сечения. Большей популярностью пользуются круглые трубы, они оказывают меньшее сопротивление потоку проходящего воздуха.

Прямоугольные трубы не нарушают эстетичный вид помещения, их можно монтировать вплотную к стене.

Гофрированные и тканевые воздуховоды бывают только круглыми в сечении, пластиковые и металлические могут быть и круглой, и прямоугольной формы.

Размеры сечения рассчитываются по специальной формуле для каждого конкретного помещения. На практике часто встречаются диаметры 100-120 мм для круглых труб и размеры 55×110, 60×122 – для прямоугольных.

Бланк расчета системы вентиляции

№ участка (см. рис. 2.2)

P

Д,

Па Значения R

определяют или по специальным таблицам, или по номограмме (рисунок 3.2), составленной для стальных круглых воздуховодов диаметромd . Этой же номограммой можно пользоваться и для расчета воздуховодов прямоугольного сеченияab , только в этом случае под величинойd понимают эквивалентный диаметрd э = 2ab /(a +b ). На номограмме указаны также значения динамического давления потока воздуха, соответствующие плотности стандартного воздуха (t = 20 о C; φ = 50 %; барометрическое давление 101,3 кПа;

= 1,2 кг/м 3 ). При плотности

динамическое давление равно показанию шкалы, умноженному на отношение

/1,2

Подбирают вентиляторы по аэродинамическим характеристикам, показывающим графическую взаимозависимость их полного давления, подачи, частоты вращения и окружной скорости рабочего колеса. Эти характеристики составлены для стандартного воздуха.

Удобно вести подбор вентиляторов по номограммам, представляющим собой сводные характеристики вентиляторов одной серии. На рисунке 3.3 изображена номограмма для выбора центробежных вентиляторов серии Ц4-70 * , получивших широкое применение в вентиляционных системах сельскохозяйственных производственных зданий и сооружений. Эти вентиляторы обладают высокими аэродинамическими качествами, бесшумны в работе.

Из точки, соответствующей найденному значению подачи L

в, проводят прямую до пересечения с лучом номера вентилятора (№ вент.) и далее по вертикали до линии расчетного полного давления

вентилятора.

Точка пересечения соответствует КПД вентилятора

и значению безразмерного коэффициентаА

, по которому подсчитывают частоту вращения вентилятора (мин -1 ).

Горизонтальная шкала номограммы показывает скорость движения воздуха в выпускном отверстии вентилятора.

Подбор вентилятора надо вести с таким расчетом, чтобы его КПД был не ниже 0,85 максимального значения.

Необходимая мощность на валу электродвигателя для привода вентилятора, кВт:

Рис.3.2 Номограмма для расчетов круглых стальных воздуховодов

Рис.3.3 Номограмма для подбора центробежных вентиляторов серии Ц4-70

Формула расчета гидравлических потерь давления

В этой статье мы решим задачку на потерю напора в трубопроводе. Данная статья поможет вам понять, как идет сопротивление движению потока. На реальных цифрах, опишу алгоритм как это делать. Используем основные формулы.

Разберем простой пример с трубой, как видно на изображении в начале трубы насос потом идет манометр, который позволяет измерить давление жидкости в начале трубы. Через определенную длину установлен второй манометр, который позволяет измерить давление в конце трубы. Ну и в самом конце стоит кран. Эта схема достаточно проста, и я попытаюсь привести примеры. И так начнем.

Вообще существует не один способ как узнать потерю напора: Способ, когда известно давление вначале и в конце трубы, можно вычислить потерю напора по формуле: М1-М2=Давление, то есть эта разница между двумя манометрами. Допустим у нас получилось, грубо говоря 0,1 МПа, что составляет одну атмосферу. Это значит у нас потеря напора по длине составляет 0,1 МПа

Обратите внимание, мы можем указывать потерю напора по двум величинам, это по гидростатическому давлению, что составляет 0,1 МПа и по высоте напора водного столба в метрах, что составляет 10 метров. Как я не однократно говорил каждые 10 метров это одна атмосфера давления

Существует ряд методов, как рассчитать потерю напора не имея манометров на трубах. Ученые исследователи приготовили для нашего пользования замечательные формулы и цифры, которые нам пригодятся.

Существует хорошая формула которая позволяет вычислить потерю напора по длине трубопровода.

h-потеря напора здесь она измеряется в метрах. λ-коеффициент гидравлического трения, находится дополнительными формулами о которых опишу ниже. L-длина трубопровода измеряется в метрах. D-внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах. V-скорость потока жидкости. Измеряется [Метр/секунда]. g-ускорение свободного падения равен 9,81 м/с 2

А теперь поговорим о коэффициенте гидравлического трения.

Формулы нахождения этого коэффициента зависит от числа Рейнольдса и эквивалента шероховатости труб.

Напомню эту формулу (она применима только к круглым трубам):

V-Скорость потока жидкости. Измеряется [Метр/секунда]. D-Внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах. ν-Кинематическая вязкость. Это обычно для нас готовая цифра, находится в специальных таблицах.

Далее находим формулу для нахождения коэффициента гидравлического трения по таблице:

Здесь Δэ — Эквивалент шероховатости труб. Эта величина в таблицах указывается в милиметрах, но вы когда будете вставлять в формулу обязательно переводите в метры. Вообще не забывайте соблюдать пропорциональность единиц измерения и не смешивайте в формулах разных типа с .

d-внутренний диаметр трубы, то есть диаметр потока жидкости.

Также хочу подметить, что подобные величины по шероховатости бывают абсолютными и относительными или даже есть относительные коэффициенты. Поэтому когда если будете искать таблицы с величинами, то величина эта должа называться «эквивалентом шероховатости труб» и не как иначе, а то результат будет ошибочный. Эквивалент означает — средняя высота шероховатости.

В некоторых ячейках таблицы указаны две формулы, вы можете считать на любой выбранной, они почти дают одинаковый результат.

Таблица: (Эквивалент шероховатости)

Таблица: (Кинематическая вязкость воды)

А теперь давайте решим задачу:

Найти потерю напора по длине при движении воды по чугунной новой трубе D=500мм при расходе Q=2 м 3 /с, длина трубы L=900м, температура t=16°С.

Дано: D=500мм=0.5м Q=2 м 3 /с L=900м t=16°С Жидкость: H2O Найти: h-?

Решение: Для начала найдем скорость потока в трубе по формуле:

Сдесь ω — площадь сечения потока. Находится по формуле:

ω=πR 2 =π(D 2 /4)=3.14*(0,5 2 /4)=0,19625 м 2

Далее находим число Рейнольдса по формуле:

Re=(V*D)/ν=(10,19*0.5)/0,00000116=4 392 241

ν=1,16*10 -6 =0,00000116. Взято из таблицы. Для воды при температуре 16°С.

Δэ=0,25мм=0,00025м. Взято из таблицы, для новой чугунной трубы.

Далее сверяемся по таблице где находим формулу по нахождению коэффициента гидравлического трения.

Далее завершаем формулой:

h=λ*(L*V 2 )/(D*2*g)=0,01645*(900*10,19 2 )/(0,5*2*9,81)=156,7 м.

Ответ: 156,7 м. = 1,567 МПа.

Давайте рассмотрим пример, когда труба идет вверх под определенным углом.

В этом случае нам к обычной задаче нужно прибавить высоту(в метрах) к потери напора. Если труба будет идти на спуск в низ, то тут необходимо вичитать высоту.

Чтобы в ручную не считать всю математику я приготовил специальную программу:

Источник

ФИЗИЧЕСКИЕ СОСТАВЛЯЮЩИЕ РАСЧЁТОВ

По способу работы, в настоящее время, вентиляционные схемы делятся на:

  1. Вытяжные. Для удаления использованного воздуха.
  2. Приточные. Для впуска чистого воздуха.
  3. Рекуперационные. Приточно-вытяжные. Удаляют использованный и впускают чистый.

В современном мире схемы вентиляции включают в себя различное дополнительное оборудование:

  1. Устройства для подогрева или охлаждения подаваемого воздуха.
  2. Фильтры для очистки запахов и примесей.
  3. Приборы для увлажнения и распределения воздуха по помещениям.

При расчёте вентиляции учитывают следующие величины:

  1. Расход воздуха в куб.м./час.
  2. Давление в воздушных каналах в атмосферах.
  3. Мощность подогревателя в квт-ах.
  4. Площадь сечения воздушных каналов в кв.см.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector